Flame Synthesis of Carbon and Metal-Oxide Nanoparticles: Flame Types, Effects of Combustion Parameters on Properties and Measurement Methods
Abstract
:1. Introduction
2. Flame Configuration
2.1. Premixed Flames
2.2. Non-Premixed Diffusion Flames
2.2.1. Normal Diffusion Flames
2.2.2. Inverse Diffusion Flames
2.2.3. Counterflow Diffusion Flames
2.2.4. Multiple Diffusion Flames
2.3. Flame Spray Pyrolysis
3. Effect of Operation Conditions in Combustion
3.1. Equivalence Ratio in the Flame
3.2. Effect of Stoichiometric Mixture Fraction
3.3. Effect of Flame Temperature
3.4. Effect of Fuel Type and Precursors
3.5. Effect of Residence Time
3.6. Effect of Substrate Materials
3.7. Effect of the Flame Configuration
4. Measurement Techniques
4.1. Particle Collection and Preparation of Samples
4.2. Ex-Situ Measurement Techniques
4.2.1. Imaging Techniques—Electron Microscopy
Transmission Electron Microscopy (TEM)
Scanning Electron Microscopy (SEM)
Atomic Force Microscopy (AFM)
4.2.2. The Brunauer-Emmet-Teller Method (BET)
4.2.3. Dynamic Light Scattering (DLS)
4.2.4. X-ray Diffraction (XRD)
4.2.5. X-ray Photoelectron Spectroscopy (XPS)
4.2.6. Raman Spectroscopy
4.2.7. Fourier-Transform Infrared (FTIR) Spectroscopy
4.2.8. Photoluminescence Spectroscopy (PL Spectroscopy)
4.2.9. Thermogravimetric Analysis (TGA)
4.2.10. UV-vis-NIR Spectrophotometry
4.2.11. Vibrating Sample Magnetometer (VSM)
4.3. In-Situ Measurement Techniques
4.3.1. SMPS—Scanning Mobility Particle Size
4.3.2. Laser Diagnostic Techniques
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviature | Definition |
a.u. | Arbitrary unit |
ACL | Amorphous carbon layer |
AFM | Atomic force microscopy |
AlxOy | Aluminum oxide |
α-Al2O3 | Corundum phase—Aluminum oxide |
γ-, η-, ρ-, θ-, δ-, χ-, κ-Al2O3 | Metastable phases—Aluminum oxide |
Ar | Argon |
BET | Brunauer-Emmet-Teller method |
BF-TEM | Bright field—transmission electron microscopy |
BSE | Backscattered electrons |
°C | Celsius degree (temperature unit) |
cm3 | Cubic centimeters (volume unit) |
CNO | Carbon nano—onions |
CNP | Carbon nanoparticles |
CNT | Carbon nanotubes |
CO2 | Carbon dioxide |
CuK | Cooper-Potassium |
CVD | Chemical vapor deposition |
CW | Continuous wave |
CXHY | Hydrocarbon compounds |
Deg. | Degree (Angular position unit) |
DF-TEM | Dark field–transmission electron microscopy |
DLS | Dynamic light scattering |
DMA | Differential mobility analyzer |
DSC | Differential scanning calorimetry |
EDX | Energy dispersive X-ray (spectrum) |
EFTEM | Energy-filtered transmission electron microscopy |
ENM | Engineered nanomaterials |
ETEM | Environmental transmission electron microscopy |
FCCVD | Floating catalysts–chemical vapor deposition |
Fe(II) | Iron (+2 oxidation state) |
Fe(III) | Iron (+3 oxidation state) |
FeO | Wustite phase–iron oxide |
FESEM | Field emission–scanning electron microscopy |
FexOy | Iron-oxide |
α-Fe2O3 | Hematite phase–iron oxide |
γ-Fe2O3 | Maghemite phase-iron oxide |
Fe3O4 | Magnetite phase-Iron oxide |
FSP | Flame spray pyrolisis |
FTIR | Fourier-transform infrared |
FWHM | Full width at half maximum |
HAADF | High-angle annular dark field |
HIM | Helium ion microscopy |
hr | Hour (time unit) |
HRTEM | High resolution-transmission electron microscopy |
ID | Signal intensity of the D-band (Raman spectroscopy) |
IG | Signal intensity of the G-band (Raman spectroscopy) |
K | Kelvin (temperature unit) |
kV | Kilovolts (electric potential difference unit) |
LIBS | Laser-induced breakdown spectroscopy |
LIF | Laser-induced fluorescence |
LII | Laser-induced incandescence |
Li | Lithium |
MEDB | Multi—element diffusion burner |
mg | Milligram (mass unit) |
ml | Milliliters (volume unit) |
MnxOy | Manganese oxide |
ms | Miliseconds (time unit) |
MS | Mass spectrometry |
mW | Miliwatts (power unit) |
N | Newton—force unit |
nm | Nanometers (length unit) |
NCM | Nickel-rich cathode material |
NP | Nanoparticle |
N2 | Nitrogen (molecule) |
OV | Oxygen vacancies |
Pa | Pascals (pressure unit) |
PAH | Polycyclic aromatic hydrocarbon |
pH | Potential of hydrogen |
PL | Photoluminescence |
PS-LIBS | Phase-selective laser-induced breakdown spectroscopy |
Pt | Platinum |
SAED | Selected area electron diffraction |
SAXS | Small-angle X-ray scattering |
SE | Secondary electrons |
SEM | Scanning electron microscopy |
SiO2 | Silicon oxide |
SMPS | Scanning mobility particle size |
SSA | Specific surface area |
STP | Standard temperature and pressure |
TEM | Transmission electron microscopy |
TGA | Thermogravimetric analysis |
TiO2 | Titanium oxide |
TiO2-II | Srilankite phase of TiO2 |
TiRe | Time-resolved |
TMS | Tetramethylsilane |
TTIP | Titanium isopropoxide |
UHV | Ultra-high vacuum |
UV-vis-NIR | Ultraviolet-visible-near infrared |
VSM | Vibrating sample magnetometer |
WO3 | Tungsten oxide |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray diffraction |
YSZ | Zirconium acetate + Yttrium acetate |
ZnO | Zinc oxide |
ZrxOy | Zirconium oxide |
Zst | Stoichiometric mixture fraction |
φ | Equivalence ratio |
References
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Aschner, M. Chapter 8—Nanoparticles: Transport across the olfactory epithelium and application to the assessment of brain function in health and disease. In Progress in Brain Research; Sharma, H.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 180, pp. 141–152. [Google Scholar]
- Chu, H.; Han, W.; Ren, F.; Xiang, L.; Wei, Y.; Zhang, C. Flame Synthesis of Carbon Nanotubes on Different Substrates in Methane Diffusion Flames. ES Energy Environ. 2018, 2, 73–81. [Google Scholar] [CrossRef]
- Hu, W.-C.; Hou, S.-S.; Lin, T.-H. Transition of carbon nanostructures in heptane diffusion flames. J. Nanoparticle Res. 2017, 19, 82. [Google Scholar] [CrossRef]
- Varghese, S.; Kuriakose, S. Synthesis, characterisation and antibacterial studies of carbon nanoparticle and carbon nanoparticle encapsulated in functionally modified β-cyclodextrin with {5-[4-(dimethylamino) benzylidene]-4-oxo-2-thioxo-1, 3-thiazolidin-3-yl} acetic acid. Supramol. Chem. 2016, 28, 293–304. [Google Scholar] [CrossRef]
- Mohapatra, D.; Badrayyana, S.; Parida, S. Facile wick-and-oil flame synthesis of high-quality hydrophilic onion-like carbon nanoparticles. Mater. Chem. Phys. 2016, 174, 112–119. [Google Scholar] [CrossRef]
- Ismail, M.A.; Memon, N.K.; Hedhili, M.N.; Anjum, D.H.; Chung, S.H. Synthesis of TiO2 nanoparticles containing Fe, Si, and V using multiple diffusion flames and catalytic oxidation capability of carbon-coated nanoparticles. J. Nanoparticle Res. 2016, 18, 22. [Google Scholar] [CrossRef] [Green Version]
- Pennington, A.M.; Halim, H.; Shi, J.; Kear, B.H.; Celik, F.E.; Tse, S.D. Low-pressure flame synthesis of carbon-stabilized TiO2-II (srilankite) nanoparticles. J. Aerosol Sci. 2021, 156, 105775. [Google Scholar] [CrossRef]
- Wu, S.; Wang, W.; Tu, W.; Yin, S.; Sheng, Y.; Manuputty, M.Y.; Kraft, M.; Xu, R. Premixed Stagnation Flame Synthesized TiO2 Nanoparticles with Mixed Phases for Efficient Photocatalytic Hydrogen Generation. ACS Sustain. Chem. Eng. 2018, 6, 14470–14479. [Google Scholar] [CrossRef]
- Ismail, M.A.; Mansour, M.S.; Memon, N.K.; Anjum, D.H.; Chung, S.H. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner. Combust. Sci. Technol. 2016, 188, 623–636. [Google Scholar] [CrossRef]
- Hong, H.; Memon, N.K.; Dong, Z.; Kear, B.H.; Tse, S.D. Flame synthesis of gamma-iron-oxide (γ-Fe2O3) nanocrystal films and carbon nanotubes on stainless-steel substrates. Proc. Combust. Inst. 2019, 37, 1249–1256. [Google Scholar] [CrossRef]
- Sorvali, M.; Nikka, M.; Juuti, P.; Honkanen, M.; Salminen, T.; Hyvärinen, L.; Mäkelä, J.M. Controlling the phase of iron oxide nanoparticles fabricated from iron(III) nitrate by liquid flame spray. Int. J. Ceram. Eng. Sci. 2019, 1, 194–205. [Google Scholar] [CrossRef]
- Carvajal, L.; Buitrago-Sierra, R.; Santamaría, A.; Angel, S.; Wiggers, H.; Gallego, J. Effect of Spray Parameters in a Spray Flame Reactor During FexOy Nanoparticles Synthesis. J. Therm. Spray Technol. 2020, 29, 368–383. [Google Scholar] [CrossRef]
- Rubio, L.; Pyrgiotakis, G.; Beltran-Huarac, J.; Zhang, Y.; Gaurav, J.; Deloid, G.; Spyrogianni, A.; Sarosiek, K.A.; Bello, D.; Demokritou, P. Safer-by-design flame-sprayed silicon dioxide nanoparticles: The role of silanol content on ROS generation, surface activity and cytotoxicity. Part. Fibre Toxicol. 2019, 16, 40. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, Y.; Janbazi, H.; Wlokas, I.; Levish, A.; Winterer, M.; Kasper, T. Experimental and numerical study on the influence of equivalence ratio on key intermediates and silica nanoparticles in flame synthesis. Proc. Combust. Inst. 2021, 38, 1375–1383. [Google Scholar] [CrossRef]
- Matter, M.T.; Furer, L.A.; Starsich, F.H.L.; Fortunato, G.; Pratsinis, S.E.; Herrmann, I.K. Engineering the Bioactivity of Flame-Made Ceria and Ceria/Bioglass Hybrid Nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 2830–2839. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Bo, R.; Tran-Phu, T.; Liu, G.; Tricoli, A. One-Step Rapid and Scalable Flame Synthesis of Efficient WO3 Photoanodes for Water Splitting. ChemPlusChem 2018, 83, 569–576. [Google Scholar] [CrossRef]
- Okonkwo, O.; Dhawan, S.; Biswas, P. Controlled synthesis of alumina in a spray flame aerosol reactor. J. Am. Ceram. Soc. 2022, 105, 1481–1490. [Google Scholar] [CrossRef]
- Lazareva, A.; Keller, A.A. Estimating Potential Life Cycle Releases of Engineered Nanomaterials from Wastewater Treatment Plants. ACS Sustain. Chem. Eng. 2014, 2, 1656–1665. [Google Scholar] [CrossRef]
- Inshakova, E.; Inshakova, A.; Goncharov, A. Engineered nanomaterials for energy sector: Market trends, modern applications and future prospects. IOP Conf. Ser. Mater. Sci. Eng. 2020, 971, 032031. [Google Scholar] [CrossRef]
- Giese, B.; Klaessig, F.; Park, B.; Kaegi, R.; Steinfeldt, M.; Wigger, H.; von Gleich, A.; Gottschalk, F. Risks, Release and Concentrations of Engineered Nanomaterial in the Environment. Sci. Rep. 2018, 8, 1565. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Ramanathan, S.; Gopinath, S.C.B.; Arshad, M.K.M.; Poopalan, P.; Perumal, V. 2—Nanoparticle synthetic methods: Strength and limitations. In Nanoparticles in Analytical and Medical Devices; Gopinath, S.C.B., Gang, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 31–43. [Google Scholar]
- Hamzah, N.; Yasin, M.F.M.; Yusop, M.Z.M.; Haniff, M.A.S.M.; Hasan, M.F.; Tamrin, K.F.; Subha, N.A.M. Effect of fuel and oxygen concentration toward catalyst encapsulation in water-assisted flame synthesis of carbon nanotubes. Combust. Flame 2020, 220, 272–287. [Google Scholar] [CrossRef]
- Han, W.; Chu, H.; Ya, Y.; Dong, S.; Zhang, C. Effect of fuel structure on synthesis of carbon nanotubes in diffusion flames. Fuller. Nanotub. Carbon Nanostructures 2019, 27, 265–272. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, B.; Chong, C.T.; Ding, B.; Fan, L.; Chang, X.; Hochgreb, S. Synthesis of single-walled carbon nanotubes in rich hydrogen/air flames. Mater. Chem. Phys. 2020, 254, 123479. [Google Scholar] [CrossRef]
- Alkan, B.; Cychy, S.; Varhade, S.; Muhler, M.; Schulz, C.; Schuhmann, W.; Wiggers, H.; Andronescu, C. Spray-Flame-Synthesized LaCo1−xFexO3 Perovskite Nanoparticles as Electrocatalysts for Water and Ethanol Oxidation. ChemElectroChem 2019, 6, 4266–4274. [Google Scholar] [CrossRef] [Green Version]
- El Moussawi, A.; Endres, T.; Peukert, S.; Zabeti, S.; Dreier, T.; Fikri, M.; Schulz, C. Multi-line SiO fluorescence imaging in the flame synthesis of silica nanoparticles from SiCl4. Combust. Flame 2021, 224, 260–272. [Google Scholar] [CrossRef]
- Vander Wal, R.L.; Hall, L.J.; Berger, G.M. Optimization of Flame Synthesis for Carbon Nanotubes Using Supported Catalyst. J. Phys. Chem. B 2002, 106, 13122–13132. [Google Scholar] [CrossRef]
- Wooldridge, M.S.; Torek, P.V.; Donovan, M.T.; Hall, D.L.; Miller, T.A.; Palmer, T.R.; Schrock, C.R. An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner. Combust. Flame 2002, 131, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Buyukhatipoglu, K.; Morss Clyne, A. Controlled flame synthesis of αFe2O3 and Fe3O4 nanoparticles: Effect of flame configuration, flame temperature, and additive loading. J. Nanoparticle Res. 2010, 12, 1495–1508. [Google Scholar] [CrossRef]
- Akurati, K.K.; Vital, A.; Klotz, U.E.; Bommer, B.; Graule, T.; Winterer, M. Synthesis of non-aggregated titania nanoparticles in atmospheric pressure diffusion flames. Powder Technol. 2006, 165, 73–82. [Google Scholar] [CrossRef]
- Li, T.X.; Kuwana, K.; Saito, K.; Zhang, H.; Chen, Z. Temperature and carbon source effects on methane–air flame synthesis of CNTs. Proc. Combust. Inst. 2009, 32, 1855–1861. [Google Scholar] [CrossRef]
- Lee, E.J.; Oh, K.C.; Shin, H.D. Soot formation in inverse diffusion flames of diluted ethene. Fuel 2005, 84, 543–550. [Google Scholar] [CrossRef]
- Unrau, C.J.; Axelbaum, R.L.; Biswas, P.; Fraundorf, P. Synthesis of single-walled carbon nanotubes in oxy-fuel inverse diffusion flames with online diagnostics. Proc. Combust. Inst. 2007, 31, 1865–1872. [Google Scholar] [CrossRef]
- Xu, F.; Liu, X.; Tse, S.D. Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames. Carbon 2006, 44, 570–577. [Google Scholar] [CrossRef]
- Li, T.X.; Zhang, H.G.; Wang, F.J.; Chen, Z.; Saito, K. Synthesis of carbon nanotubes on Ni-alloy and Si-substrates using counterflow methane–air diffusion flames. Proc. Combust. Inst. 2007, 31, 1849–1856. [Google Scholar] [CrossRef]
- Raj, A.; Tan, Z.; Zhu, D.; Croiset, E.; Wen, J.Z. On the particle evolution in iron pentacarbonyl loaded counterflow methane–air flame. Combust. Flame 2018, 194, 1–14. [Google Scholar] [CrossRef]
- Memon, N.K.; Anjum, D.H.; Chung, S.H. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles. Combust. Flame 2013, 160, 1848–1856. [Google Scholar] [CrossRef]
- Roller, J.M.; Kim, S.; Kwak, T.; Yu, H.; Maric, R. A study on the effect of selected process parameters in a jet diffusion flame for Pt nanoparticle formation. J. Mater. Sci. 2017, 52, 9391–9409. [Google Scholar] [CrossRef]
- Roller, J.M.; Maric, R. A Study on Reactive Spray Deposition Technology Processing Parameters in the Context of Pt Nanoparticle Formation. J. Therm. Spray Technol. 2015, 24, 1529–1541. [Google Scholar] [CrossRef]
- Karthikeyan, J.; Berndt, C.C.; Tikkanen, J.; Wang, J.Y.; King, A.H.; Herman, H. Nanomaterial powders and deposits prepared by flame spray processing of liquid precursors. Nanostructured Mater. 1997, 8, 61–74. [Google Scholar] [CrossRef]
- Sokolowski, M.; Sokolowska, A.; Michalski, A.; Gokieli, B. The “in-flame-reaction” method for Al2O3 aerosol formation. J. Aerosol Sci. 1977, 8, 219–230. [Google Scholar] [CrossRef]
- Liang, Y.; Ku, K.; Lin, Y.; Yu, L.; Wen, J.; Lee, E.; Libera, J.; Lu, J. Process Engineering to Increase the Layered Phase Concentration in the Immediate Products of Flame Spray Pyrolysis. ACS Appl. Mater. Interfaces 2021, 13, 26915–26923. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Mädler, L.; Strobel, R.; Jossen, R.; Pratsinis, S.E.; Johannessen, T. Independent Control of Metal Cluster and Ceramic Particle Characteristics During One-step Synthesis of Pt/TiO2. J. Mater. Res. 2005, 20, 2568–2577. [Google Scholar] [CrossRef] [Green Version]
- Mädler, L.; Kammler, H.K.; Mueller, R.; Pratsinis, S.E. Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 2002, 33, 369–389. [Google Scholar] [CrossRef]
- Hamzah, N.; Yasin, M.F.M.; Yusop, M.Z.M.; Saat, A.; Subha, N.A.M. Rapid production of carbon nanotubes: A review on advancement in growth control and morphology manipulations of flame synthesis. J. Mater. Chem. A 2017, 5, 25144–25170. [Google Scholar] [CrossRef]
- Turns, S.R. Introduction to Combustion; McGraw-Hill Companies: New York, NY, USA, 1996; Volume 287. [Google Scholar]
- Roper, F.G. The prediction of laminar jet diffusion flame sizes: Part I. Theoretical model. Combust. Flame 1977, 29, 219–226. [Google Scholar] [CrossRef]
- Roper, F.G.; Smith, C.; Cunningham, A.C. The prediction of laminar jet diffusion flame sizes: Part II. Experimental verification. Combust. Flame 1977, 29, 227–234. [Google Scholar] [CrossRef]
- Mikofski, M.A.; Williams, T.C.; Shaddix, C.R.; Fernandez-Pello, A.C.; Blevins, L.G. Structure of laminar sooting inverse diffusion flames. Combust. Flame 2007, 149, 463–478. [Google Scholar] [CrossRef] [Green Version]
- Wooldridge, M.S. Gas-phase combustion synthesis of particles. Prog. Energy Combust. Sci. 1998, 24, 63–87. [Google Scholar] [CrossRef]
- Barlow, R.S.; Dibble, R.W.; Chen, J.Y.; Lucht, R.P. Effect of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames. Combust. Flame 1990, 82, 235–251. [Google Scholar] [CrossRef]
- Teoh, W.Y.; Amal, R.; Mädler, L. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. Nanoscale 2010, 2, 1324–1347. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Manuputty, M.Y.; Sheng, Y.; Wang, H.; Yan, Y.; Kraft, M.; Xu, R. Flame Synthesized Blue TiO2−x with Tunable Oxygen Vacancies from Surface to Grain Boundary to Bulk. Small Methods 2021, 5, 2000928. [Google Scholar] [CrossRef] [PubMed]
- Kumfer, B.M.; Shinoda, K.; Jeyadevan, B.; Kennedy, I.M. Gas-phase flame synthesis and properties of magnetic iron oxide nanoparticles with reduced oxidation state. J. Aerosol Sci. 2010, 41, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyer, M.S.K.; Patil, S.; Singh, A.V. Flame Synthesis of Functional Carbon Nanoparticles. Trans. Indian Natl. Acad. Eng. 2022, 7, 787–807. [Google Scholar] [CrossRef]
- Picca, F.; Pietro, A.D.; Commodo, M.; Minutolo, P.; D’Anna, A. Variable Temperature Synthesis of Tunable Flame-Generated Carbon Nanoparticles. C 2021, 7, 44. [Google Scholar] [CrossRef]
- Wei, J.; Ren, Y.; Zhang, Y.; Shi, B.; Li, S. Effects of temperature-time history on the flame synthesis of nanoparticles in a swirl-stabilized tubular burner with two feeding modes. J. Aerosol Sci. 2019, 133, 72–82. [Google Scholar] [CrossRef]
- Kluge, S.; Deng, L.; Feroughi, O.; Schneider, F.; Poliak, M.; Fomin, A.; Tsionsky, V.; Cheskis, S.; Wlokas, I.; Rahinov, I.; et al. Initial reaction steps during flame synthesis of iron-oxide nanoparticles. CrystEngComm 2015, 17, 6930–6939. [Google Scholar] [CrossRef] [Green Version]
- Wegner, K.; Pratsinis, S.E. Scale-up of nanoparticle synthesis in diffusion flame reactors. Chem. Eng. Sci. 2003, 58, 4581–4589. [Google Scholar] [CrossRef]
- Meierhofer, F.; Li, H.; Gockeln, M.; Kun, R.; Grieb, T.; Rosenauer, A.; Fritsching, U.; Kiefer, J.; Birkenstock, J.; Mädler, L.; et al. Screening Precursor–Solvent Combinations for Li4Ti5O12 Energy Storage Material Using Flame Spray Pyrolysis. ACS Appl. Mater. Interfaces 2017, 9, 37760–37777. [Google Scholar] [CrossRef] [PubMed]
- Speight, J.G. Chapter 10 - Combustion of hydrocarbons. In Handbook of Industrial Hydrocarbon Processes (Second Edition); Speight, J.G., Ed.; Gulf Professional Publishing: Boston, MA, USA, 2020; pp. 421–463. [Google Scholar]
- Palies, P. 3—Premixed swirling flame stabilization. In Stabilization and Dynamic of Premixed Swirling Flames; Palies, P., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 105–158. [Google Scholar]
- Liu, H.; Cui, Y.; Chen, B.; Kyritsis, D.C.; Tang, Q.; Feng, L.; Wang, Y.; Li, Z.; Geng, C.; Yao, M. Effects of Flame Temperature on PAHs and Soot Evolution in Partially Premixed and Diffusion Flames of a Diesel Surrogate. Energy Fuels 2019, 33, 11821–11829. [Google Scholar] [CrossRef]
- Roller, J.; Renner, J.; Yu, H.; Capuano, C.; Kwak, T.; Wang, Y.; Carter, C.B.; Ayers, K.; Mustain, W.E.; Maric, R. Flame-based processing as a practical approach for manufacturing hydrogen evolution electrodes. J. Power Source 2014, 271, 366–376. [Google Scholar] [CrossRef]
- Wei, J.; Li, S.; Ren, Y.; Zhang, Y.; Tse, S.D. Investigating the role of solvent formulations in temperature-controlled liquid-fed aerosol flame synthesis of YAG-based nanoparticles. Proc. Combust. Inst. 2019, 37, 1193–1201. [Google Scholar] [CrossRef]
- Chang, B.P.; Gupta, A.; Mekonnen, T.H. Flame synthesis of carbon nanoparticles from corn oil as a highly effective cationic dye adsorbent. Chemosphere 2021, 282, 131062. [Google Scholar] [CrossRef] [PubMed]
- Dobbins, R.A.; Megaridis, C.M. Morphology of flame-generated soot as determined by thermophoretic sampling. Langmuir 1987, 3, 254–259. [Google Scholar] [CrossRef]
- Amin, H.M.F.; Bennett, A.; Roberts, W.L. Morphology of soot sampled from N2-diluted methane/air counterflow flames at elevated pressures via TEM imaging. Combust. Flame 2020, 216, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Leschowski, M.; Dreier, T.; Schulz, C. An automated thermophoretic soot sampling device for laboratory-scale high-pressure flames. Rev. Sci. Instrum. 2014, 85, 045103. [Google Scholar] [CrossRef] [PubMed]
- Inkson, B.J. 2—Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Hübschen, G., Altpeter, I., Tschuncky, R., Herrmann, H.-G., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 17–43. [Google Scholar]
- Michler, G.H. Scanning Electron Microscopy (SEM). In Electron Microscopy of Polymers; Springer: Berlin/Heidelberg, Germany, 2008; pp. 87–120. [Google Scholar]
- Michler, G.H. Transmission Electron Microscopy: Fundamentals of Methods and Instrumentation. In Electron Microscopy of Polymers; Springer: Berlin/Heidelberg, Germany, 2008; pp. 15–51. [Google Scholar]
- Sciau, P. Chapter Two - Transmission Electron Microscopy: Emerging Investigations for Cultural Heritage Materials. In Advances in Imaging and Electron Physics; Hawkes, P.W., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 198, pp. 43–67. [Google Scholar]
- Zhang, X.; Gao, W.; Su, X.; Wang, F.; Liu, B.; Wang, J.-J.; Liu, H.; Sang, Y. Conversion of solar power to chemical energy based on carbon nanoparticle modified photo-thermoelectric generator and electrochemical water splitting system. Nano Energy 2018, 48, 481–488. [Google Scholar] [CrossRef]
- Michler, G.H. Transmission Electron Microscopy: Conventional and Special Investigations of Polymers. In Electron Microscopy of Polymers; Springer: Berlin/Heidelberg, Germany, 2008; pp. 53–85. [Google Scholar]
- Farré, M.; Barceló, D. Chapter 1—Introduction to the Analysis and Risk of Nanomaterials in Environmental and Food Samples. In Comprehensive Analytical Chemistry; Farré, M., Barceló, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 59, pp. 1–32. [Google Scholar]
- Khare, T.; Oak, U.; Shriram, V.; Verma, S.K.; Kumar, V. Chapter Ten—Biologically synthesized nanomaterials and their antimicrobial potentials. In Comprehensive Analytical Chemistry; Verma, S.K., Das, A.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 87, pp. 263–289. [Google Scholar]
- Han, S.; Yang, J.; Li, X.; Li, W.; Zhang, X.; Koratkar, N.; Yu, Z.-Z. Flame Synthesis of Superhydrophilic Carbon Nanotubes/Ni Foam Decorated with Fe2O3 Nanoparticles for Water Purification via Solar Steam Generation. ACS Appl. Mater. Interfaces 2020, 12, 13229–13238. [Google Scholar] [CrossRef] [PubMed]
- Dowsett, D.; Wirtz, T. Co-Registered In Situ Secondary Electron and Mass Spectral Imaging on the Helium Ion Microscope Demonstrated Using Lithium Titanate and Magnesium Oxide Nanoparticles. Anal. Chem. 2017, 89, 8957–8965. [Google Scholar] [CrossRef] [PubMed]
- Boden, S.A. Introduction to Imaging Techniques in the HIM. In Helium Ion Microscopy; Hlawacek, G., Gölzhäuser, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 149–172. [Google Scholar]
- Schenk, M.; Lieb, S.; Vieker, H.; Beyer, A.; Gölzhäuser, A.; Wang, H.; Kohse-Höinghaus, K. Morphology of nascent soot in ethylene flames. Proc. Combust. Inst. 2015, 35, 1879–1886. [Google Scholar] [CrossRef]
- Betrancourt, C.; Liu, F.; Desgroux, P.; Mercier, X.; Faccinetto, A.; Salamanca, M.; Ruwe, L.; Kohse-Höinghaus, K.; Emmrich, D.; Beyer, A.; et al. Investigation of the size of the incandescent incipient soot particles in premixed sooting and nucleation flames of n-butane using LII, HIM, and 1 nm-SMPS. Aerosol Sci. Technol. 2017, 51, 916–935. [Google Scholar] [CrossRef] [Green Version]
- Meyer, E. Atomic force microscopy. Prog. Surf. Sci. 1992, 41, 3–49. [Google Scholar] [CrossRef]
- Kholghy, M.; Saffaripour, M.; Yip, C.; Thomson, M.J. The evolution of soot morphology in a laminar coflow diffusion flame of a surrogate for Jet A-1. Combust. Flame 2013, 160, 2119–2130. [Google Scholar] [CrossRef]
- Delvallée, A.; Feltin, N.; Ducourtieux, S.; Trabelsi, M.; Hochepied, J.F. Direct comparison of AFM and SEM measurements on the same set of nanoparticles. Meas. Sci. Technol. 2015, 26, 085601. [Google Scholar] [CrossRef]
- Lu, P.-J.; Huang, S.-C.; Chen, Y.-P.; Chiueh, L.-C.; Shih, D.Y.-C. Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J. Food Drug Anal. 2015, 23, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Boyd, R.D.; Pichaimuthu, S.K.; Cuenat, A. New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering. Colloids Surf. A Physicochem. Eng. Asp. 2011, 387, 35–42. [Google Scholar] [CrossRef]
- Kent, R.D.; Vikesland, P.J. Controlled Evaluation of Silver Nanoparticle Dissolution Using Atomic Force Microscopy. Environ. Sci. Technol. 2012, 46, 6977–6984. [Google Scholar] [CrossRef] [Green Version]
- Hoo, C.M.; Starostin, N.; West, P.; Mecartney, M.L. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J. Nanoparticle Res. 2008, 10, 89–96. [Google Scholar] [CrossRef]
- Abid, A.D.; Tolmachoff, E.D.; Phares, D.J.; Wang, H.; Liu, Y.; Laskin, A. Size distribution and morphology of nascent soot in premixed ethylene flames with and without benzene doping. Proc. Combust. Inst. 2009, 32, 681–688. [Google Scholar] [CrossRef]
- Barone, A.C.; D’Alessio, A.; D’Anna, A. Morphological characterization of the early process of soot formation by atomic force microscopy. Combust. Flame 2003, 132, 181–187. [Google Scholar] [CrossRef]
- Hansen, L.T.; Kühle, A.; Sørensen, A.H.; Bohr, J.; Lindelof, P.E. A technique for positioning nanoparticles using an atomic force microscope. Nanotechnology 1998, 9, 337. [Google Scholar] [CrossRef]
- Korayem, M.H.; Khaksar, H. A survey on dynamic modeling of manipulation of nanoparticles based on atomic force microscope and investigation of involved factors. J. Nanoparticle Res. 2020, 22, 27. [Google Scholar] [CrossRef]
- Rao, A.; Schoenenberger, M.; Gnecco, E.; Th, G.; Meyer, E.; Brändlin, D.; Scandella, L. Characterization of nanoparticles using Atomic Force Microscopy. J. Phys. Conf. Ser. 2007, 61, 971. [Google Scholar] [CrossRef] [Green Version]
- Itoh, H.; Fujimoto, T.; Ichimura, S. Tip characterizer for atomic force microscopy. Rev. Sci. Instrum. 2006, 77, 103704. [Google Scholar] [CrossRef]
- Abu Talib, A.R.; Nadiir Bheekhun, M.I. 10—Aerogel-based thermally sprayed coatings for aero-propulsion systems: A feasibility study based on structural health monitoring approach. In Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Jawaid, M., Thariq, M., Saba, N., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 191–225. [Google Scholar]
- Šljivić-Ivanović, M.; Smičiklas, I. 23—Utilization of C&D waste in radioactive waste treatment—Current knowledge and perspectives. In Advances in Construction and Demolition Waste Recycling; Pacheco-Torgal, F., Ding, Y., Colangelo, F., Tuladhar, R., Koutamanis, A., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 475–500. [Google Scholar]
- Palchoudhury, S.; Baalousha, M.; Lead, J.R. Chapter 5—Methods for Measuring Concentration (Mass, Surface Area and Number) of Nanomaterials. In Frontiers of Nanoscience; Baalousha, M., Lead, J.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 8, pp. 153–181. [Google Scholar]
- Kumar, A.; Dixit, C.K. 3—Methods for characterization of nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids; Nimesh, S., Chandra, R., Gupta, N., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 43–58. [Google Scholar]
- Ramos, A.P. 4—Dynamic Light Scattering Applied to Nanoparticle Characterization. In Nanocharacterization Techniques; Da Róz, A.L., Ferreira, M., de Lima Leite, F., Oliveira, O.N., Eds.; William Andrew Publishing: Norwich, NY, USA, 2017; pp. 99–110. [Google Scholar]
- Nimesh, S. 3—Tools and techniques for physico-chemical characterization of nanoparticles. In Gene Therapy; Nimesh, S., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 43–63. [Google Scholar]
- Mintova, S.; Valtchev, V. Effect of the silica source on the formation of nanosized silicalite-1: An in situ dynamic light scattering study. Microporous Mesoporous Mater. 2002, 55, 171–179. [Google Scholar] [CrossRef]
- Xie, R.; Batchelor-McAuley, C.; Young, N.P.; Compton, R.G. Electrochemical impacts complement light scattering techniques for in situ nanoparticle sizing. Nanoscale 2019, 11, 1720–1727. [Google Scholar] [CrossRef]
- Badaire, S.; Poulin, P.; Maugey, M.; Zakri, C. In Situ Measurements of Nanotube Dimensions in Suspensions by Depolarized Dynamic Light Scattering. Langmuir 2004, 20, 10367–10370. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-ray Diffraction; Addison-Wesley Publishing: Boston, UK, 1956. [Google Scholar]
- Warren, B.E. X-ray Diffraction; Courier Corporation: North Chelmsford, MA, USA, 1990. [Google Scholar]
- Birkholz, M. Thin Film Analysis by X-ray Scattering; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Li, Z.Q.; Lu, C.J.; Xia, Z.P.; Zhou, Y.; Luo, Z. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 2007, 45, 1686–1695. [Google Scholar] [CrossRef]
- Babu, V.S.; Seehra, M.S. Modeling of disorder and X-ray diffraction in coal-based graphitic carbons. Carbon 1996, 34, 1259–1265. [Google Scholar] [CrossRef]
- Shen, T.D.; Ge, W.Q.; Wang, K.Y.; Quan, M.X.; Wang, J.T.; Wei, W.D.; Koch, C.C. Structural disorder and phase transformation in graphite produced by ball milling. Nanostructured Mater. 1996, 7, 393–399. [Google Scholar] [CrossRef]
- Seehra, M.S.; Pavlovic, A.S. X-ray diffraction, thermal expansion, electrical conductivity, and optical microscopy studies of coal-based graphites. Carbon 1993, 31, 557–564. [Google Scholar] [CrossRef]
- Yen, T.F.; Erdman, J.G.; Pollack, S.S. Investigation of the structure of petroleum asphaltenes by X-ray diffraction. Anal. Chem. 1961, 33, 1587–1594. [Google Scholar] [CrossRef]
- Lee, W.-J.; Kim, H.V.; Choi, J.-H.; Panomsuwan, G.; Lee, Y.-C.; Rho, B.-S.; Kang, J. Recycling Waste Soot from Merchant Ships to Produce Anode Materials for Rechargeable Lithium-Ion Batteries. Sci. Rep. 2018, 8, 5601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zickler, G.A.; Smarsly, B.; Gierlinger, N.; Peterlik, H.; Paris, O. A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon 2006, 44, 3239–3246. [Google Scholar] [CrossRef]
- Franklin, R.E. The structure of graphitic carbons. Acta Crystallogr. 1951, 4, 253–261. [Google Scholar] [CrossRef]
- Thompson, P.; Cox, D.; Hastings, J. Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Crystallogr. 1987, 20, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Bushroa, A.R.; Rahbari, R.G.; Masjuki, H.H.; Muhamad, M.R. Approximation of crystallite size and microstrain via XRD line broadening analysis in TiSiN thin films. Vacuum 2012, 86, 1107–1112. [Google Scholar] [CrossRef]
- Mather, R.R. 13—Surface modification of textiles by plasma treatments. In Surface Modification of Textiles; Wei, Q., Ed.; Woodhead Publishing: Sawston, UK, 2009; pp. 296–317. [Google Scholar]
- Telegdi, J.; Shaban, A.; Vastag, G. Biocorrosion—Steel. In Encyclopedia of Interfacial Chemistry; Wandelt, K., Ed.; Elsevier: Oxford, UK, 2018; pp. 28–42. [Google Scholar]
- Huang, H.; Qiao, Y.; Yuan, Y.; Zhang, J. Surface functionalization for heterogeneous catalysis. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- John, N.; George, S. Chapter 5—Raman Spectroscopy. In Spectroscopic Methods for Nanomaterials Characterization; Thomas, S., Thomas, R., Zachariah, A.K., Mishra, R.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 95–127. [Google Scholar]
- Withnall, R. Raman Spectroscopy. In Encyclopedia of Modern Optics (Second Edition); Guenther, B.D., Steel, D.G., Eds.; Elsevier: Oxford, UK, 2005; pp. 354–368. [Google Scholar]
- Kaburagi, Y.; Yoshida, A.; Hishiyama, Y. Chapter 7—Raman Spectroscopy. In Materials Science and Engineering of Carbon; Inagaki, M., Kang, F., Eds.; Butterworth-Heinemann: Oxford, UK, 2016; pp. 125–152. [Google Scholar]
- Claye, A.; Rahman, S.; Fischer, J.E.; Sirenko, A.; Sumanasekera, G.U.; Eklund, P.C. In situ Raman scattering studies of alkali-doped single wall carbon nanotubes. Chem. Phys. Lett. 2001, 333, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.-F.; Ramesh, K.; Chen, L.; Widjaja, E.; Chilukoti, S.; Chen, F. Observation of the Reversible Phase-Transformation of α-Mn2O3 Nanocrystals during the Catalytic Combustion of Methane by in Situ Raman Spectroscopy. J. Phys. Chem. C 2007, 111, 2830–2833. [Google Scholar] [CrossRef]
- Le, K.C.; Lefumeux, C.; Pino, T. Watching soot inception via online Raman spectroscopy. Combust. Flame 2022, 236, 111817. [Google Scholar] [CrossRef]
- Tang, H.; Yang, C.; Wang, G.; Guiberti, T.F.; Magnotti, G. Raman spectroscopy for quantitative measurements of temperature and major species in high-pressure non-premixed NH3/H2/N2 counterflow flames. Combust. Flame 2022, 237, 111840. [Google Scholar] [CrossRef]
- Titus, D.; James Jebaseelan Samuel, E.; Roopan, S.M. Chapter 12—Nanoparticle characterization techniques. In Green Synthesis, Characterization and Applications of Nanoparticles; Shukla, A.K., Iravani, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 303–319. [Google Scholar]
- Rani, M.; Keshu; Shanker, U. Chapter 3—Green nanomaterials: An overview. In Green Functionalized Nanomaterials for Environmental Applications; Shanker, U., Hussain, C.M., Rani, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 43–80. [Google Scholar]
- Sánchez, A.; Eddings, E.; Mondragón, F. Fourier Transform Infrared (FTIR) Online Monitoring of NO, N2O, and CO2 during Oxygen-Enriched Combustion of Carbonaceous Materials. Energy Fuels 2010, 24, 4849–4853. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, T.; Deng, J.; Shu, C.-M.; Zeng, Q.; Guo, T.; Zhang, Y. Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR. Energy 2020, 209, 118494. [Google Scholar] [CrossRef]
- Ciuparu, D.; Perkins, E.; Pfefferle, L. In situ DR-FTIR investigation of surface hydroxyls on γ-Al2O3 supported PdO catalysts during methane combustion. Appl. Catal. A Gen. 2004, 263, 145–153. [Google Scholar] [CrossRef]
- Arabi–Katbi, O.I.; Pratsinis, S.E.; Morrison, P.W.; Megaridis, C.M. Monitoring the flame synthesis of TiO2 particles by in-situ FTIR spectroscopy and thermophoretic sampling. Combust. Flame 2001, 124, 560–572. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.-K.; Gao, F. Chapter 1—Fundamentals of Solar Cells and Light-Emitting Diodes. In Advanced Nanomaterials for Solar Cells and Light Emitting Diodes; Gao, F., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–35. [Google Scholar]
- Ruiz Peralta, M.D.L.; Pal, U.; Zeferino, R.S. Photoluminescence (PL) Quenching and Enhanced Photocatalytic Activity of Au-Decorated ZnO Nanorods Fabricated through Microwave-Assisted Chemical Synthesis. ACS Appl. Mater. Interfaces 2012, 4, 4807–4816. [Google Scholar] [CrossRef] [PubMed]
- Worsfold, P.J. SPECTROPHOTOMETRY | Overview. In Encyclopedia of Analytical Science (Second Edition); Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, UK, 2005; pp. 318–321. [Google Scholar]
- Ryabenko, A.G.; Dorofeeva, T.V.; Zvereva, G.I. UV–VIS–NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and Van-der-Waals SWNT/SWNT interaction. Verification of the SWNT content measurements by absorption spectroscopy. Carbon 2004, 42, 1523–1535. [Google Scholar] [CrossRef]
- Frandsen, B.A.; Read, C.; Stevens, J.; Walker, C.; Christiansen, M.; Harrison, R.G.; Chesnel, K. Superparamagnetic dynamics and blocking transition in Fe3O4 nanoparticles probed by vibrating sample magnetometry and muon spin relaxation. Phys. Rev. Mater. 2021, 5, 054411. [Google Scholar] [CrossRef]
- Kayani, Z.N.; Arshad, S.; Riaz, S.; Naseem, S. Synthesis of Iron Oxide Nanoparticles by Sol–Gel Technique and Their Characterization. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Knutson, E.O.; Whitby, K.T. Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci. 1975, 6, 443–451. [Google Scholar] [CrossRef]
- Wang, S.C.; Flagan, R.C. Scanning Electrical Mobility Spectrometer. Aerosol Sci. Technol. 1990, 13, 230–240. [Google Scholar] [CrossRef]
- Zhao, B.; Uchikawa, K.; Wang, H. A comparative study of nanoparticles in premixed flames by scanning mobility particle sizer, small angle neutron scattering, and transmission electron microscopy. Proc. Combust. Inst. 2007, 31, 851–860. [Google Scholar] [CrossRef]
- Fernández de la Mora, J.; Kozlowski, J. Hand-held differential mobility analyzers of high resolution for 1–30nm particles: Design and fabrication considerations. J. Aerosol Sci. 2013, 57, 45–53. [Google Scholar] [CrossRef]
- Seto, T.; Nakamoto, T.; Okuyama, K.; Adachi, M.; Kuga, Y.; Takeuchi, K. Size distribution measurement of nanometer-sized aerosol particles using dma under low-pressure conditions. J. Aerosol Sci. 1997, 28, 193–206. [Google Scholar] [CrossRef]
- Reischl, G.P.; Mäkelä, J.M.; Necid, J. Performance of Vienna Type Differential Mobility Analyzer at 1.2–20 Nanometer. Aerosol Sci. Technol. 1997, 27, 651–672. [Google Scholar] [CrossRef]
- Nanda, K.K.; Kruis, F.E. A radial differential mobility analyzer for the size-classification of gas-phase synthesized nanoparticles at low pressures. Meas. Sci. Technol. 2014, 25, 075605. [Google Scholar] [CrossRef]
- Tritscher, T.; Beeston, M.; Zerrath, A.F.; Elzey, S.; Krinke, T.J.; Filimundi, E.; Bischof, O.F. NanoScan SMPS—A Novel, Portable Nanoparticle Sizing and Counting Instrument. J. Phys. Conf. Ser. 2013, 429, 012061. [Google Scholar] [CrossRef] [Green Version]
- Larriba, C.; Hogan, C.J.; Attoui, M.; Borrajo, R.; Garcia, J.F.; de la Mora, J.F. The Mobility–Volume Relationship below 3.0 nm Examined by Tandem Mobility–Mass Measurement. Aerosol Sci. Technol. 2011, 45, 453–467. [Google Scholar] [CrossRef] [Green Version]
- Larriba-Andaluz, C.; Carbone, F. The size-mobility relationship of ions, aerosols, and other charged particle matter. J. Aerosol Sci. 2021, 151, 105659. [Google Scholar] [CrossRef]
- Tammet, H. Size and mobility of nanometer particles, clusters and ions. J. Aerosol Sci. 1995, 26, 459–475. [Google Scholar] [CrossRef]
- Ku, B.K.; de la Mora, J.F. Relation between Electrical Mobility, Mass, and Size for Nanodrops 1–6.5 nm in Diameter in Air. Aerosol Sci. Technol. 2009, 43, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Mäkelä, J.M.; Riihelä, M.; Ukkonen, A.; Jokinen, V.; Keskinen, J. Comparison of mobility equivalent diameter with Kelvin-Thomson diameter using ion mobility data. J. Chem. Phys. 1996, 105, 1562–1571. [Google Scholar] [CrossRef]
- Ehn, M.; Junninen, H.; Schobesberger, S.; Manninen, H.E.; Franchin, A.; Sipilä, M.; Petäjä, T.; Kerminen, V.-M.; Tammet, H.; Mirme, A.; et al. An Instrumental Comparison of Mobility and Mass Measurements of Atmospheric Small Ions. Aerosol Sci. Technol. 2011, 45, 522–532. [Google Scholar] [CrossRef]
- Zhang, C.; Thajudeen, T.; Larriba, C.; Schwartzentruber, T.E.; Hogan, C.J. Determination of the Scalar Friction Factor for Nonspherical Particles and Aggregates Across the Entire Knudsen Number Range by Direct Simulation Monte Carlo (DSMC). Aerosol Sci. Technol. 2012, 46, 1065–1078. [Google Scholar] [CrossRef]
- Maricq, M.M.; Harris, S.J.; Szente, J.J. Soot size distributions in rich premixed ethylene flames. Combust. Flame 2003, 132, 328–342. [Google Scholar] [CrossRef]
- Zhao, B.; Yang, Z.; Wang, J.; Johnston, M.V.; Wang, H. Analysis of Soot Nanoparticles in a Laminar Premixed Ethylene Flame by Scanning Mobility Particle Sizer. Aerosol Sci. Technol. 2003, 37, 611–620. [Google Scholar] [CrossRef]
- Yang, G.; Biswas, P. Study of the Sintering of Nanosized Titania Agglomerates in Flames Using In Situ Light Scattering Measurements. Aerosol Sci. Technol. 1997, 27, 507–521. [Google Scholar] [CrossRef] [Green Version]
- Camenzind, A.; Schulz, H.; Teleki, A.; Beaucage, G.; Narayanan, T.; Pratsinis, S.E. Nanostructure Evolution: From Aggregated to Spherical SiO2 Particles Made in Diffusion Flames. Eur. J. Inorg. Chem. 2008, 2008, 911–918. [Google Scholar] [CrossRef]
- Gröhn, A.J.; Pratsinis, S.E.; Wegner, K. Fluid-particle dynamics during combustion spray aerosol synthesis of ZrO2. Chem. Eng. J. 2012, 191, 491–502. [Google Scholar] [CrossRef]
- Heine, M.C.; Pratsinis, S.E. Droplet and particle dynamics during flame spray synthesis of nanoparticles. Ind. Eng. Chem. Res. 2005, 44, 6222–6232. [Google Scholar] [CrossRef]
- Kurz, M.; D’Anna, A.; D’Alessio, A.; Merola, S.S.; Borghese, A. UV-Broadband Light Scattering Measurements During Metallic Particle Formation in a Combustion-Like Environment. Part. Part. Syst. Charact. 1999, 16, 77–84. [Google Scholar] [CrossRef]
- Amin, H.M.F.; Roberts, W.L. Soot measurements by two angle scattering and extinction in an N2-diluted ethylene/air counterflow diffusion flame from 2 to 5atm. Proc. Combust. Inst. 2017, 36, 861–869. [Google Scholar] [CrossRef]
- Amin, H.M.F.; Roberts, W.L. An experimental apparatus to measure soot morphology at high pressures using multi-angle light scattering. Meas. Sci. Technol. 2019, 30, 075902. [Google Scholar] [CrossRef]
- Li, Z.; Liu, P.; Chu, C.; Chung, S.H.; Roberts, W.L. Incipient sooting tendency of oxygenated fuels doped in ethylene counterflow diffusion flames. Combust. Flame 2022, 244, 112284. [Google Scholar] [CrossRef]
- Li, Z.; Amin, H.M.F.; Liu, P.; Wang, Y.; Chung, S.H.; Roberts, W.L. Effect of dimethyl ether (DME) addition on sooting limits in counterflow diffusion flames of ethylene at elevated pressures. Combust. Flame 2018, 197, 463–470. [Google Scholar] [CrossRef]
- Sorensen, C.M.; Yon, J.; Liu, F.; Maughan, J.; Heinson, W.R.; Berg, M.J. Light scattering and absorption by fractal aggregates including soot. J. Quant. Spectrosc. Radiat. Transf. 2018, 217, 459–473. [Google Scholar] [CrossRef]
- Kelesidis, G.A.; Kholghy, M.R.; Zuercher, J.; Robertz, J.; Allemann, M.; Duric, A.; Pratsinis, S.E. Light scattering from nanoparticle agglomerates. Powder Technol. 2020, 365, 52–59. [Google Scholar] [CrossRef]
- Aßmann, S.; Münsterjohann, B.; Huber, F.J.T.; Will, S. In Situ Determination of Droplet and Nanoparticle Size Distributions in Spray Flame Synthesis by Wide-Angle Light Scattering (WALS). Materials 2021, 14, 6698. [Google Scholar] [CrossRef]
- Ceolato, R.; Bedoya-Velásquez, A.E.; Fossard, F.; Mouysset, V.; Paulien, L.; Lefebvre, S.; Mazzoleni, C.; Sorensen, C.; Berg, M.J.; Yon, J. Black carbon aerosol number and mass concentration measurements by picosecond short-range elastic backscatter lidar. Sci. Rep. 2022, 12, 8443. [Google Scholar] [CrossRef]
- Liu, P.; Chu, C.; Alsheikh, I.; Gubba, S.R.; Saxena, S.; Chatakonda, O.; Kloosterman, J.W.; Liu, F.; Roberts, W.L. Soot production in high pressure inverse diffusion flames with enriched oxygen in the oxidizer stream. Combust. Flame 2022, 245, 112378. [Google Scholar] [CrossRef]
- Liu, P.; Guo, J.; Im, H.G.; Roberts, W.L. The effects of CO2/CH4 ratio on soot formation for autothermal reforming of methane at elevated pressure. Combust. Flame 2022, 112379. [Google Scholar] [CrossRef]
- Liu, P.; Guo, J.; Quadarella, E.; Bennett, A.; Gubba, S.R.; Saxena, S.; Chatakonda, O.; Kloosterman, J.W.; He, X.; Im, H.G.; et al. The effect of preheating temperature on PAH/soot formation in methane/air co-flow flames at elevated pressure. Fuel 2022, 313, 122656. [Google Scholar] [CrossRef]
- Michelsen, H.A.; Liu, F.; Kock, B.F.; Bladh, H.; Boiarciuc, A.; Charwath, M.; Dreier, T.; Hadef, R.; Hofmann, M.; Reimann, J.; et al. Modeling laser-induced incandescence of soot: A summary and comparison of LII models. Appl. Phys. B 2007, 87, 503–521. [Google Scholar] [CrossRef] [Green Version]
- Schulz, C.; Kock, B.F.; Hofmann, M.; Michelsen, H.; Will, S.; Bougie, B.; Suntz, R.; Smallwood, G. Laser-induced incandescence: Recent trends and current questions. Appl. Phys. B 2006, 83, 333. [Google Scholar] [CrossRef]
- De Iuliis, S.; Migliorini, F.; Dondè, R. Laser-induced emission of TiO2 nanoparticles in flame spray synthesis. Appl. Phys. B 2019, 125, 1–11. [Google Scholar] [CrossRef]
- Gurentsov, E.V.; Eremin, A.V. Size measurement of carbon and iron nanoparticles by laser induced incadescence. High Temp. 2011, 49, 667–673. [Google Scholar] [CrossRef]
- Daun, K.; Menser, J.; Mansmann, R.; Moghaddam, S.T.; Dreier, T.; Schulz, C. Spectroscopic models for laser-heated silicon and copper nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2017, 197, 3–11. [Google Scholar] [CrossRef]
- D’Anna, A.; D’Alessio, A.; Minutolo, P. Spectroscopic and Chemical Characterization of Soot Inception Processes in Premixed Laminar Flames at Atmospheric Pressure. In Soot Formation in Combustion: Mechanisms and Models; Bockhorn, H., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 83–103. [Google Scholar]
- Bruno, A.; Ossler, F.; de Lisio, C.; Minutolo, P.; Spinelli, N.; D’Alessio, A. Detection of fluorescent nanoparticles in flame with femtosecond laser-induced fluorescence anisotropy. Opt. Express 2008, 16, 5623–5632. [Google Scholar] [CrossRef]
- De Iuliis, S.; Dondè, R.; Altman, I. On Pyrometry in Particulate-Generating Flames. Combust. Sci. Technol. 2022, 194, 1800–1814. [Google Scholar] [CrossRef]
- Stasio, S.d.; Massoli, P. Influence of the soot property uncertainties in temperature and volume-fraction measurements by two-colour pyrometry. Meas. Sci. Technol. 1994, 5, 1453. [Google Scholar] [CrossRef]
- Jenkins, T.P.; Hanson, R.K. Soot pyrometry using modulated absorption/emission. Combust. Flame 2001, 126, 1669–1679. [Google Scholar] [CrossRef]
- Mekhrengin, M.; Miroshnichenko, G.; Chistiakov, A.; Bolotov, D.; Ashirov, A.; Zubko, A.; Meshkovskiy, I. Combination of soot pyrometry and C2∗ emission spectroscopy for temperature measurement during combustion of hydrocarbons. Measurement 2020, 166, 108242. [Google Scholar] [CrossRef]
- Zhong, G.; Xu, S.; Chen, C.; Kline, D.J.; Giroux, M.; Pei, Y.; Jiao, M.; Liu, D.; Mi, R.; Xie, H.; et al. Synthesis of Metal Oxide Nanoparticles by Rapid, High-Temperature 3D Microwave Heating. Adv. Funct. Mater. 2019, 29, 1904282. [Google Scholar] [CrossRef]
- Amodeo, T.; Dutouquet, C.; Tenegal, F.; Guizard, B.; Maskrot, H.; Le Bihan, O.; Frejafon, E. On-line monitoring of composite nanoparticles synthesized in a pre-industrial laser pyrolysis reactor using Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 1183–1190. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, M.; Niemiec, N.A.; Demko, A.R.; Petersen, E.L.; Kulatilaka, W.D. Laser-induced-breakdown-spectroscopy-based detection of metal particles released into the air during combustion of solid propellants. Appl. Opt. 2018, 57, 1910–1917. [Google Scholar] [CrossRef]
- Mukherjee, D.; Rai, A.; Zachariah, M.R. Quantitative laser-induced breakdown spectroscopy for aerosols via internal calibration: Application to the oxidative coating of aluminum nanoparticles. J. Aerosol Sci. 2006, 37, 677–695. [Google Scholar] [CrossRef]
- Xiong, G.; Li, S.; Zhang, Y.; Buckley, S.G.; Stephen, D.T. Phase-selective laser-induced breakdown spectroscopy of metal-oxide nanoparticle aerosols with secondary resonant excitation during flame synthesis. J. Anal. At. Spectrom. 2016, 31, 482–491. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Ren, Y.; Yao, Q.; Law, C.K. Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas. Appl. Phys. Lett. 2014, 104, 023115. [Google Scholar] [CrossRef]
Flame Configuration | Burner Geometry | Produced Nanoparticles | Reference |
---|---|---|---|
Premixed flames | Bunsen | CNPs | [29] |
Multi-element diffusion burner | SiO2 | [30] | |
Diffusion flames | Normal/Inverse coflow | FexOy | [31] |
TiO2 | [32] | ||
Normal coflow | CNTs | [33] | |
Inverse coflow | CNP—soot | [34] | |
CNTs | [35,36] | ||
Counterflow | CNTs | [33,37] | |
FexOy; CNP—soot | [38] | ||
Multi-element diffusion burner | SiO2 | [30] | |
TiO2 | [39] | ||
Flame spray pyrolysis (FSP) | Diffusion atomizing burner | Pt | [40,41] |
AlxOy, ZrxOy, MnxOy, YSZ | [42] | ||
AlxOy | [43] | ||
Premixed atomizing burner | NCMs | [44] | |
Pt/TiO2 | [45] | ||
SiO2 | [46] |
Combustion Parameter | Flame Configuration | Produced NP | Particle Properties | Reference |
---|---|---|---|---|
Equivalence ratio | Premixed flame | SiO2 | Number density, particle size, | [15] |
TiO2 | Morphology | [55] | ||
Flame spray pyrolysis | FexOy | Number density, structural phase composition | [13] | |
Particle size, structural phase composition | [12] | |||
AlxOy | Particle size | [18] | ||
Stoichiometric mixture fraction | Diffusion flame | CNP—soot | Number density | [56] |
FexOy | Structural phase composition | |||
Flame temperature | Premixed flame | CNP | Particle size, mass yield, morphology | [57,58] |
CNT | Morphology | [26] | ||
TiO2 | Structural phase composition | [10,59] | ||
SiO2 | Structural phase composition | [15] | ||
FexOy | Mass yield | [60] | ||
Diffusion flame | FexOy | Particle size, structural phase composition | [56] | |
SiO2, TiO2 | Particle size | [61] | ||
Flame spray pyrolysis | SiO2 | Morphology | [14] | |
FexOy | Morphology, structural phase composition | [18] | ||
LixTiyOz | Morphology | [62] | ||
Fuel type and precursors | Diffusion flame | CNP—soot | Number density | [25] |
Flame spray pyrolysis | FexOy | Morphology | [12] | |
Particle size, number density | [18] | |||
Number density | [13] | |||
LixTiyOz | Morphology | [62] | ||
Residence time | Premixed flame | TiO2 | Particle size, structural phase composition | [8] |
Morphology, structural phase composition | [10] | |||
CNT | Morphology | [26] | ||
Flame spray pyrolysis | FexOy | Morphology, structural phase composition | [18] | |
Particle size | [12] | |||
Structural phase composition | [13] | |||
Substrate material | Diffusion flame | CNT | Number density | [25] |
Morphology, number density | [3] | |||
FexOy | Number density | [11] | ||
Flame configuration | Diffusion flame | CNT | Particle size | [25] |
Premixed flame | SiO2 | [15] | ||
Flame spray pyrolysis | LixTiyOz | [62] | ||
Perovskites (FexOy) | [27] | |||
AlxOy | [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano-Bayona, R.; Chu, C.; Liu, P.; Roberts, W.L. Flame Synthesis of Carbon and Metal-Oxide Nanoparticles: Flame Types, Effects of Combustion Parameters on Properties and Measurement Methods. Materials 2023, 16, 1192. https://doi.org/10.3390/ma16031192
Serrano-Bayona R, Chu C, Liu P, Roberts WL. Flame Synthesis of Carbon and Metal-Oxide Nanoparticles: Flame Types, Effects of Combustion Parameters on Properties and Measurement Methods. Materials. 2023; 16(3):1192. https://doi.org/10.3390/ma16031192
Chicago/Turabian StyleSerrano-Bayona, Raul, Carson Chu, Peng Liu, and William L. Roberts. 2023. "Flame Synthesis of Carbon and Metal-Oxide Nanoparticles: Flame Types, Effects of Combustion Parameters on Properties and Measurement Methods" Materials 16, no. 3: 1192. https://doi.org/10.3390/ma16031192
APA StyleSerrano-Bayona, R., Chu, C., Liu, P., & Roberts, W. L. (2023). Flame Synthesis of Carbon and Metal-Oxide Nanoparticles: Flame Types, Effects of Combustion Parameters on Properties and Measurement Methods. Materials, 16(3), 1192. https://doi.org/10.3390/ma16031192