Broadband Profiled Eye-Safe Emission of LMA Silica Fiber Doped with Tm3+/Ho3+ Ions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Optical Fiber Preform Characterization
3.2. Optical Fiber Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sliney, D.H. Laser safety. Lasers Surg. Med. 1995, 16, 215–225. [Google Scholar] [CrossRef] [PubMed]
- McCally, R.L.; Bargeron, C.B.; Bonney-Ray, J.A.; Richard Green, W. Laser Eye Safety Research at APL. Johns Hopkins APL Tech. Dig. 2005, 26, 1. [Google Scholar]
- Airborne Laser Systems Testing and Analysis; APR 2010, AC/323(SCI-126)TP/259. Available online: www.rto.nato.int (accessed on 18 September 2023).
- Heussner, N.; Ramos, S.; Lücking, M.; Schwarz, C.; Frederiksen, A. Eye Safety Evaluation of Laser Systems Based on Damage Calculations; Laser Institute of America: Orlando, FL, USA, 2019; p. 204. [Google Scholar]
- Buckley, E. Eye-Safety Analysis of Current Laser-Based LCOS Projection Systems. J. Soc. Inf. Disp. 2010, 18, 1051. [Google Scholar] [CrossRef]
- Kotzur, S.; Wahl, S.; Frederiksen, A. Wave Optical Simulation of Retinal Images in Laser Safety Evaluations. J. Biophotonics 2021, 14, e202000339. [Google Scholar] [CrossRef] [PubMed]
- Khaldi, A.; Daniel, E.; Massin, L.; Kärnfelt, C.; Ferranti, F.; Lahuec, C.; Seguin, F.; Nourrit, V.; de Bougrenet de la Tocnaye, J.L. A Laser Emitting Contact Lens for Eye Tracking. Sci. Rep. 2020, 10, 14804. [Google Scholar] [CrossRef] [PubMed]
- Parker, S. Laser Regulation and Safety in General Dental Practice. Br. Dent. J. 2007, 202, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Delisi, M.P.; Peralta, X.G.; Lund, B.J.; Mitchell, W.E.; Oian, C.A.; Hoffman, A.F.; Wing, H.P. Review of Skin and Cornea Laser-Induced Damage Thresholds from 1400 Nm to 2000 Nm and Broad-Spectrum Supra-Threshold Effects; Air Force Research Laboratory: Hanscom, MA, USA, 2021. [Google Scholar]
- Yue, W.; Chen, T.; Kong, W.; Chen, X.; Huang, G.; Shu, R. Eye-Safe Aerosol and Cloud Lidar Based on Free-Space Intracavity Upconversion Detection. Remote Sens. 2022, 14, 2934. [Google Scholar] [CrossRef]
- Villa, F.; Severini, F.; Madonini, F.; Zappa, F. Spads and Sipms Arrays for Long-range High-speed Light Detection and Ranging (Lidar). Sensors 2021, 21, 3839. [Google Scholar] [CrossRef]
- Williams, G.M. Optimization of Eyesafe Avalanche Photodiode Lidar for Automobile Safety and Autonomous Navigation Systems. Opt. Eng. 2017, 56, 031224. [Google Scholar] [CrossRef]
- Daggett, C.; Daggett, A.; McBurney, E.; Murina, A. Laser Safety: The Need for Protocols. Cutis 2020, 106, 87–92. [Google Scholar] [CrossRef]
- Semwal, K.; Bhatt, S.C. Tuning of Wavelengths for Producing Eye Safe Laser Using Second Order Nonlinear Processes. Int. J. Opt. Appl. 2012, 2, 20–28. [Google Scholar] [CrossRef]
- Ritt, G. Laser Safety Calculations for Imaging Sensors. Sensors 2019, 19, 3765. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kang, Y.; Guo, X.; Li, Y.; Liu, K.; Xie, Y.; Wu, H.; Cai, D.; Gong, J.; Shi, Z.; et al. High-Power Continuous-Wave Optical Waveguiding in a Silica Micro/Nanofibre. Light Sci. Appl. 2023, 12, 89. [Google Scholar] [CrossRef] [PubMed]
- Vanda, J. Laser Induced Damage Threshold Testing; Physical Sciences. Available online: www.researchoutreach.org (accessed on 19 September 2023).
- Garcia-Lechuga, M.; Utéza, O.; Sanner, N. Evidencing the Nonlinearity Independence of Resolution in Femtosecond Laser Ablation. Opt. Lett. 2020, 45, 952–955. [Google Scholar] [CrossRef] [PubMed]
- Vanda, J.; Muresan, M.-G.; Bilek, V.; Sebek, M.; Hanus, M.; Lucianetti, A.; Rostohar, D.; Mocek, T. Laser induced damage threshold of optical fibers under ns pulses. Proc. SPIE 2016, 10014, 100140T-1. [Google Scholar]
- Todorov, F.; Aubrecht, J.; Peterka, P.; Schreiber, O.; Jasim, A.A.; Mrázek, J.; Podrazký, O.; Kamrádek, M.; Kanagaraj, N.; Grábner, M.; et al. Active Optical Fibers and Components for Fiber Lasers Emitting in the 2-Μm Spectral Range. Materials 2020, 13, 5177. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.V.; Do, B.T.; Hadley, G.R.; Farrow, R.L. Optical Damage Limits to Pulse Energy from Fibers. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 153–158. [Google Scholar] [CrossRef]
- Yang, S.; Yang, Y.Y.; Zhang, J.Y.; Zhang, L.; Huang, J.Y.; Bai, Y.R.; Lin, X.C. Wavelength-Adjustable Mode-Locked Tm-Ho Co-Doped Fiber Laser from 1839 nm to 1876 nm. Opt. Fiber Technol. 2018, 46, 157–161. [Google Scholar] [CrossRef]
- Simakov, N.; Hemming, A.; Clarkson, W.A.; Haub, J.; Carter, A. A Cladding-Pumped, Tunable Holmium Doped Fiber Laser. Opt. Express 2013, 21, 28415. [Google Scholar] [CrossRef]
- Kochanowicz, M.; Zmojda, J.; Miluski, P.; Baranowska, A.; Sadowska, K.; Kuwik, M.; Pisarska, J.; Pisarski, W.A.; Dorosz, D. Ultra-Broadband Emission in Er3+/Tm3+/Ho3+ Triply-Doped Germanate Glass and Double-Clad Optical Fiber. Opt. Mater. Express 2022, 12, 2332. [Google Scholar] [CrossRef]
- Markiewicz, J.; Kochanowicz, M.; Ragiń, T.; Sadowska, K.; Żmojda, J.; Miluski, P.; Dorosz, J.; Kuwik, M.; Pisarski, W.A.; Pisarska, J.; et al. Broadband 1.5–2.1 Μm Emission in Gallo-Germanate Dual-Core Optical Fiber Co-Doped with Er3+ and Yb3+/Tm3+/Ho3+. Opt. Express 2023, 31, 28850. [Google Scholar] [CrossRef] [PubMed]
- Brian, J.; Cole, B.J.; Dennis, M.L. Heavy Metal Modified Silica Glass Fibers Doped with Thulium, Holmium, and Thulium-Sensitized-Holmium High Quantum Efficiencies. United States Patent No. US6667257B2, 23 December 2003. [Google Scholar]
- Honzatko, P.; Baravets, Y.; Kasik, I.; Podrazky, O. Wideband thulium-holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600–2300 nm spectral band. Opt. Lett. 2014, 39, 3650. [Google Scholar] [CrossRef] [PubMed]
- Schuster, K.; Unger, S.; Aichele, C.; Lindner, F.; Grimm, S.; Litzkendorf, D.; Kobelke, J.; Bierlich, J.; Wondraczek, K.; Bartelt, H. Material and Technology Trends in Fiber Optics. Adv. Opt. Technol. 2014, 3, 447–468. [Google Scholar] [CrossRef]
- Vařák, P.; Kamrádek, M.; Mrázek, J.; Podrazký, O.; Aubrecht, J.; Peterka, P.; Nekvindová, P.; Kašík, I. Luminescence and Laser Properties of RE-Doped Silica Optical Fibers: The Role of Composition, Fabrication Processing, and Inter-Ionic Energy Transfers. Opt. Mater. X 2022, 15, 100177. [Google Scholar] [CrossRef]
- Kasik, I.; Podrazky, O.; Mrazek, J.; Cajzl, J.; Aubrecht, J.; Probostova, J.; Peterka, P.; Honzatko, P.; Dhar, A. Erbium and Al2O3 Nanocrystals-Doped Silica Optical Fibers. Bull. Pol. Acad. Sci. Tech. Sci. 2014, 62, 641–646. [Google Scholar] [CrossRef]
- Blanc, W.; Dussardier, B. Formation and Applications of Nanoparticles in Silica Optical Fibers. J. Opt. 2016, 45, 247–254. [Google Scholar] [CrossRef]
- Liao, L.; Zhang, F.; He, X.; Chen, Y.; Wang, Y.; Li, H.; Peng, J.; Yang, L.; Dai, N.; Li, J. Confined-Doped Fiber for Effective Mode Control Fabricated by MCVD Process. Appl. Opt. 2018, 57, 3244. [Google Scholar] [CrossRef]
- Ballato, J.; Ebendorff-Heidepriem, H.; Zhao, J.; Petit, L.; Troles, J. Glass and Process Development for the next generation of optical fibers: A Review. Fibers 2017, 5, 11. [Google Scholar] [CrossRef]
- Saha, M.; Pal, A.; Sen, R. Vapor Phase Chelate Delivery Technique for Fabrication of Rare Earth Doped Optical Fiber. In Proceedings of the International Conference on Fibre Optics and Photonics 2012, Chennai India, 9–12 December 2012; pp. 10–13. [Google Scholar] [CrossRef]
- Sharif, K.A.M.; Omar, N.Y.M.; Zulkifli, M.I.; Yassin, S.Z.M.; Abdul-Rashid, H.A. Fabrication of Alumina-Doped Optical Fiber Preforms by an MCVD-Metal Chelate Doping Method. Appl. Sci. 2020, 10, 7231. [Google Scholar] [CrossRef]
- Miluski, P.; Kochanowicz, M.; Żmojda, J.; Dorosz, D.; Łodziński, M.; Baranowska, A.; Dorosz, J. Eye Safe Emission in Tm3+/Ho3+ and Yb3+/Tm3+ Co-Doped Optical Fibers Fabricated Using MCVD-CDS System. Opt. Mater. 2020, 101, 109711. [Google Scholar] [CrossRef]
- Paul, M.; Kir’yanov, A.; Barmenkov, Y.; Pal, M.; Youngman, R.; Dhar, A.; Das, S. Phase-Separated Alumina-Silica Glass-Based Erbium-Doped Fibers for Optical Amplifier: Material and Optical Characterization along with Amplification Properties. Fibers 2018, 6, 67. [Google Scholar] [CrossRef]
- An, H.; Tang, Y.; McNamara, P.; Fleming, S. Viewing structural inhomogeneities at the core-cladding interface of re-heated MCVD optical fiber performs with optical microscopy. Opt. Express 2004, 12, 6153–6158. [Google Scholar] [CrossRef] [PubMed]
- Hemming, A.; Simakov, N.; Haub, J.; Carter, A. A review of recent progress in holmium-doped silica fibre sources. Opt. Fiber Technol. 2014, 20, 621–630. [Google Scholar] [CrossRef]
- Available online: https://mountainphotonics.de/wp-content/uploads/2019/01/Fiber-optics-cat-250518-.pdf (accessed on 26 September 2023).
- Broderick, N.G.R.; Offerhaus, H.L.; Richardson, D.J.; Sammut, R.A.; Caplen, J.; Dong, L. Large Mode Area Fibers for High Power Applications. Opt. Fiber Technol. 1999, 5, 185–196. [Google Scholar] [CrossRef]
- Zhao, N.; Li, W.; Li, J.; Zhou, G.; Li, J. Elimination of the Photodarkening Effect in an Yb-Doped Fiber Laser with Deuterium. J. Light. Technol. 2019, 37, 3021–3026. [Google Scholar] [CrossRef]
- Sun, T.; Su, X.; Zhang, Y.; Zhang, H.; Zheng, Y. Progress and Summary of Photodarkening in Rare Earth Doped Fiber. Appl. Sci. 2021, 11, 10386. [Google Scholar] [CrossRef]
- Lee, C.; Schuck, P.J. Photodarkening, Photobrightening, and the Role of Color Centers in Emerging Applications of Lanthanide-Based Upconverting Nanomaterials. Annu. Rev. Phys. Chem. 2023, 74, 415–438. [Google Scholar] [CrossRef]
- Dussardier, B.; Rastogi, V.; Kumar, A.; Monnom, G. Large Mode Area Leaky Optical Fiber Fabricated by MCVD. Appl. Opt. 2011, 50, 3118–3122. [Google Scholar] [CrossRef]
- Manek-Hönninger, I.; Boullet, J.; Cardinal, T.; Guillen, F.; Ermeneux, S.; Podgorski, M.; Bello Doua, R.; Salin, F.; Paschotta, R.; Nilsson, J.; et al. Ytterbium-Doped Fiber Amplifiers. Opt. Express 2007, 15, 16061997. [Google Scholar]
- Li, M.J.; Chen, X.; Liu, A.; Gray, S.; Wang, J.; Walton, D.T.; Zenteno, L.A. Limit of Effective Area for Single-Mode Operation in Step-Index Large Mode Area Laser Fibers. J. Light. Technol. 2009, 27, 3010–3016. [Google Scholar] [CrossRef]
- Miluski, P.; Kochanowicz, M.; Zmojda, J.; Baranowska, A.; Leśniak, M.; Dorosz, D.; Markowski, K.; Dorosz, J. Large mode area fibers for single-mode transmission near 2 μm. Proc. SPIE 2022, 12142, 121420M. [Google Scholar]
- Baggett, J.C.; Monro, T.M.; Furusawa, K.; Richardson, D.J. Comparative study of large-mode holey and conventional fibers. Opt. Lett. 2001, 26, 1045. [Google Scholar] [CrossRef] [PubMed]
- Jain, D.; Jung, Y.; Kim, J.; Sahu, J.K. Robust single-mode all-solid multi-trench fiber with large effective mode area. Opt. Lett. 2014, 39, 5200–5203. [Google Scholar] [CrossRef] [PubMed]
- Jain, D.; Baskiotis, C.; Sahu, J.K. Mode Area Scaling with Multi-Trench Rod-Type Fibers. Opt. Express 2013, 21, 1448. [Google Scholar] [CrossRef] [PubMed]
- Miluski, P.; Markowski, K.; Kochanowicz, M.; Łodziński, M.; Żmojda, J.; Pisarski, W.A.; Pisarska, J.; Kuwik, M.; Leśniak, M.; Dorosz, D.; et al. Tm3+/Ho3+ Profiled Co-Doped Core Area Optical Fiber for Emission in the Range of 1.6–2.1 µm. Sci. Rep. 2023, 13, 13963. [Google Scholar] [CrossRef] [PubMed]
- Michalik, D.; Anuszkiewicz, A.; Buczynski, R.; Kasztelanic, R. Toward Highly Birefringent Silica Large Mode Area Optical Fibers with Anisotropic Core. Opt. Express 2021, 29, 22883. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Shao, X.; Wu, Z.; Lee, T.; Sun, Y.; Lam, H.Q.; Zhang, J.; Brambilla, G.; Ping, S. Efficient One-Third Harmonic Generation in Highly Germania-Doped Fibers Enhanced by Pump Attenuation. Opt. Express 2013, 21, 28403. [Google Scholar] [CrossRef]
- Zhu, Y.; Zeng, C.; He, Z.; Gao, Q.; Wang, H.; Du, Y.; Mao, D. Ultrafast all-anomalous-dispersion Er-doped large-mode-area fiber lasers. Opt. Laser Technol. 2022, 148, 107783. [Google Scholar] [CrossRef]
- Baskiotis, C.; Heidt, A.M.; Alam, S.; Richardson, D.J. LMA Effectively Single-Mode Thulium Doped Fibre with Normal Dispersion at Wavelengths around 2 um. In Proceedings of the 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, Munich, Germany, 12–16 May 2013; p. 10100. [Google Scholar] [CrossRef]
- Písařík, M.; Peterka, P.; Aubrecht, J.; Cajzl, J.; Benda, A.; Mareš, D.; Todorov, F.; Podrazký, O.; Honzátko, P.; Kašík, I. Thulium-Doped Fibre Broadband Source for Spectral Region near 2 Micrometers. Opto-Electron. Rev. 2016, 24, 223–231. [Google Scholar] [CrossRef]
- da Vila, L.D.; Gomes, L.; Tarelho, L.V.G.; Ribeiro, S.J.L.; Messaddeq, Y. Dynamics of Tm–Ho energy transfer and deactivation of the 3F4 low level of thulium in fluorozirconate glasses. J. Appl. Phys. 2004, 95, 10. [Google Scholar] [CrossRef]
- Aubrecht, J.; Peterka, P.; Honzátko, P.; Moravec, O.; Kamrádek, M.; Kašík, I. Broadband Thulium-Doped Fiber ASE Source. Opt. Lett. 2020, 45, 2164. [Google Scholar] [CrossRef] [PubMed]
- Shamsudin, H.; Latiff, A.A.; Razak, N.N.; Jusoh, Z.; Ahmad, H.; Harun, S.W. Performance Comparison of Single-Mode Single-Cladding Thulium Doped and Thulium/Holmium Co-Doped Fiber Lasers in Ring Cavity. J. Optoelectron. Adv. Mater. 2016, 18, 757–762. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miluski, P.; Markowski, K.; Kochanowicz, M.; Łodziński, M.; Pisarski, W.A.; Pisarska, J.; Kuwik, M.; Leśniak, M.; Dorosz, D.; Żmojda, J.; et al. Broadband Profiled Eye-Safe Emission of LMA Silica Fiber Doped with Tm3+/Ho3+ Ions. Materials 2023, 16, 7679. https://doi.org/10.3390/ma16247679
Miluski P, Markowski K, Kochanowicz M, Łodziński M, Pisarski WA, Pisarska J, Kuwik M, Leśniak M, Dorosz D, Żmojda J, et al. Broadband Profiled Eye-Safe Emission of LMA Silica Fiber Doped with Tm3+/Ho3+ Ions. Materials. 2023; 16(24):7679. https://doi.org/10.3390/ma16247679
Chicago/Turabian StyleMiluski, Piotr, Krzysztof Markowski, Marcin Kochanowicz, Marek Łodziński, Wojciech A. Pisarski, Joanna Pisarska, Marta Kuwik, Magdalena Leśniak, Dominik Dorosz, Jacek Żmojda, and et al. 2023. "Broadband Profiled Eye-Safe Emission of LMA Silica Fiber Doped with Tm3+/Ho3+ Ions" Materials 16, no. 24: 7679. https://doi.org/10.3390/ma16247679
APA StyleMiluski, P., Markowski, K., Kochanowicz, M., Łodziński, M., Pisarski, W. A., Pisarska, J., Kuwik, M., Leśniak, M., Dorosz, D., Żmojda, J., Ragiń, T., & Dorosz, J. (2023). Broadband Profiled Eye-Safe Emission of LMA Silica Fiber Doped with Tm3+/Ho3+ Ions. Materials, 16(24), 7679. https://doi.org/10.3390/ma16247679