Facile Synthesis of Platinum Nanoparticle-Embedded Reduced Graphene Oxide for the Detection of Carbendazim
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Pt NPs and rGO Modified GCE via One-Step Electrodeposition
2.3. CBZ Sample Preparation
2.4. Electrochemical Measurements and Characterization of the As-Prepared GCEs
3. Results and Discussion
3.1. Electrodeposition of rGO onto GCE
3.2. One-Step Electrodeposition of Pt NPs and rGO onto GCE
3.3. Electrochemical Behaviour of Modified Electrodes
- A: The electroactive surface area of the electrode (cm2)
- D: Diffusion coefficient of the molecule (cm2/s) (K4[Fe(CN)6] = 7.6 × 10-6 cm2/s)
- n: Number of electron responsible for redox reaction (n = 1)
- V: Scan rate (V/s)
- C: Concentration of the redox probe (mol/cm3)
3.4. Electrochemical Behaviour of CBZ at Bare and Modified Electrodes
3.5. Detection of CBZ via Differential Pulse Voltammetry (DPV)
3.6. Analysis of CBZ in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joseph, X.B.; Baby, J.N.; Wang, S.-F.; Sriram, B.; George, M. Interfacial Superassembly of Mo2C@NiMn-LDH Frameworks for Electrochemical Monitoring of Carbendazim Fungicide. ACS Sustain. Chem. Eng. 2021, 9, 14900–14910. [Google Scholar] [CrossRef]
- Kasaeinasab, A.; Mahabadi, H.A.; Shahtaheri, S.J.; Faridbod, F.; Ganjali, M.R.; Mesgari, F. Carbendazim trace analysis in different samples by using nanostructured modified carbon paste electrode as voltametric sensor. PLoS ONE 2023, 18, e0279816. [Google Scholar] [CrossRef]
- Mahmoudi-Moghaddam, H.; Akbari Javar, H.; Garkani-Nejad, Z. Fabrication of platinum-doped NiCo2O4 nanograss modified electrode for determination of carbendazim. Food Chem. 2022, 383, 132398. [Google Scholar] [CrossRef]
- Suresh, I.; Selvaraj, S.; Nesakumar, N.; Rayappan, J.B.B.; Kulandaiswamy, A.J. Nanomaterials based non-enzymatic electrochemical and optical sensors for the detection of carbendazim: A review. Trends Environ. Anal. Chem. 2021, 31, e00137. [Google Scholar] [CrossRef]
- Nataraj, N.; Chen, T.W.; Akilarasan, M.; Chen, S.M.; Al-Ghamdi, A.A.; Elshikh, M.S. Se substituted 2D-gC(3)N(4) modified disposable screen-printed carbon electrode substrate: A bifunctional nano-catalyst for electrochemical and absorption study of hazardous fungicide. Chemosphere 2022, 302, 134765. [Google Scholar] [CrossRef]
- Huang, S.M.; Hu, Y.F.; Chen, Y.L.; Li, G.K.; Xia, L. Magnetic solid-phase extraction coupled with high performance liquid chromatography for pesticide residues analysis in citrus sample. Chin. J. Anal. Chem. 2020, 48, 1392–1399. [Google Scholar]
- Tzatzarakis, M.; Kokkinakis, M.; Renieri, E.; Goumenou, M.; Kavvalakis, M.; Vakonaki, E.; Chatzinikolaou, A.; Stivaktakis, P.; Tsakiris, I.; Rizos, A.; et al. Multiresidue analysis of insecticides and fungicides in apples from the Greek market. Applying an alternative approach for risk assessment. Food Chem. Toxicol. 2020, 140, 111262. [Google Scholar] [CrossRef]
- Chu, Y.; Tong, Z.; Dong, X.; Sun, M.; Gao, T.; Duan, J.; Wang, M. Simultaneous determination of 98 pesticide residues in strawberries using UPLC-MS/MS and GC-MS/MS. Microchem. J. 2020, 156, 104975. [Google Scholar] [CrossRef]
- Mahdavi, V.; Ghorbani-Paji, F.; Ramezani, M.K.; Ghassempour, A.; Aboul-Enein, H.Y. Dissipation of carbendazim and its metabolites in cucumber using liquid chromatography tandem mass spectrometry. Int. J. Environ. Anal. Chem. 2019, 99, 968–976. [Google Scholar] [CrossRef]
- Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev. 2022, 453, 214305. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; Costa-García, A.; Muñiz, A.d.l.E. Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. Biosensors 2020, 10, 32. [Google Scholar] [CrossRef]
- Santana, P.C.; Lima, J.; Santana, T.; Santos, L.F.; Matos, C.R.; da Costa, L.P.; Gimenez, I.F.; Sussuchi, E.M. Semiconductor nanocrystals-reduced graphene composites for the electrochemical detection of carbendazim. J. Braz. Chem. Soc. 2019, 30, 1302–1308. [Google Scholar] [CrossRef]
- Loguercio, L.F.; Thesing, A.; Demingos, P.; de Albuquerque, C.D.L.; Rodrigues, R.S.B.; Brolo, A.G.; Santos, J.F.L. Efficient acetylcholinesterase immobilization for improved electrochemical performance in polypyrrole nanocomposite-based biosensors for carbaryl pesticide. Sens. Actuators B Chem. 2021, 339, 129875. [Google Scholar] [CrossRef]
- Liao, X.; Huang, Z.; Huang, K.; Qiu, M.; Fuliang, C.; Zhang, Y.; Wen, Y.; Chen, J. Highly Sensitive Detection of Carbendazim and Its Electrochemical Oxidation Mechanism at a Nanohybrid Sensor. J. Electrochem. Soc. 2019, 166, B322–B327. [Google Scholar] [CrossRef]
- Gao, X.; Gao, Y.; Bian, C.; Ma, H.; Liu, H. Electroactive nanoporous gold driven electrochemical sensor for the simultaneous detection of carbendazim and methyl parathion. Electrochim. Acta 2019, 310, 78–85. [Google Scholar] [CrossRef]
- Jo, H.J.; Shit, A.; Jhon, H.S.; Park, S.Y. Highly sensitive non-enzymatic wireless glucose sensor based on Ni–Co oxide nanoneedle-anchored polymer dots. J. Ind. Eng. Chem. 2020, 89, 485–493. [Google Scholar] [CrossRef]
- Patel, M.; Agrawal, M.; Srivastava, A. Signal amplification strategies in electrochemical biosensors via antibody immobilization and nanomaterial-based transducers. Mater. Adv. 2022, 3, 8864–8885. [Google Scholar] [CrossRef]
- Duc Le, T.; Ahemad, M.J.; Kim, D.-S.; Lee, B.-H.; Oh, G.-J.; Shin, G.-S.; Nagappagari, L.R.; Dao, V.; Van Tran, T.; Yu, Y.-T. Synergistic effect of Pt-Ni dual single-atoms and alloy nanoparticles as a high-efficiency electrocatalyst to minimize Pt utilization at cathode in polymer electrolyte membrane fuel cells. J. Colloid Interface Sci. 2023, 634, 930–939. [Google Scholar] [CrossRef]
- Venegas, C.J.; Bollo, S.; Sierra-Rosales, P. Carbon-Based Electrochemical (Bio)sensors for the Detection of Carbendazim: A Review. Micromachines 2023, 14, 1752. [Google Scholar] [CrossRef]
- Nia, P.M.; Abouzari-Lotf, E.; Woi, P.M.; Alias, Y.; Ting, T.M.; Ahmad, A.; Che Jusoh, N.W. Electrodeposited reduced graphene oxide as a highly efficient and low-cost electrocatalyst for vanadium redox flow batteries. Electrochim. Acta 2019, 297, 31–39. [Google Scholar] [CrossRef]
- Pham, T.S.H.; Mahon, P.J.; Lai, G.; Fu, L.; Lin, C.-T.; Yu, A. Cauliflower-like Platinum Particles Decorated Reduced Graphene Oxide for Sensitive Determination of Acetaminophen. Electroanalysis 2019, 31, 1758–1768. [Google Scholar] [CrossRef]
- Villalobos, E.; Marco, J.F.; Yáñez, C. Reduced Graphene Oxide as a Platform for the Immobilization of Amino-Cyclodextrins. Micromachines 2023, 14, 746. [Google Scholar] [CrossRef] [PubMed]
- Noce, R.D.; Eugénio, S.; Siwek, K.I.; Silva, T.M.; Carmezim, M.J.; Sakita, A.M.P.; Lavall, R.L.; Montemor, M.F. Direct electrodeposition of hydrogenated reduced graphene oxide from unsonicated solution and its electrochemical response. Diam. Relat. Mater. 2020, 104, 107740. [Google Scholar] [CrossRef]
- Peregrino, P.P.; Cavallari, M.R.; Fonseca, F.J.; Moreira, S.G.C.; Sales, M.J.A.; Paterno, L.G. Starch-Mediated Immobilization, Photochemical Reduction, and Gas Sensitivity of Graphene Oxide Films. ACS Omega 2020, 5, 5001–5012. [Google Scholar] [CrossRef] [PubMed]
- Alinejadian, N.; Kazemi, S.H.; Nasirpouri, F.; Odnevall, I. Electro-deposited nano-Ni/reduced graphene oxide composite film of corrugated surface for high voltammetric sensitivity. Mater. Chem. Phys. 2023, 297, 127288. [Google Scholar] [CrossRef]
- Sakthivel, R.; Lin, L.Y.; Duann, Y.F.; Chen, H.H.; Su, C.; Liu, X.; He, J.H.; Chung, R.J. MOF-Derived Cu-BTC Nanowire-Embedded 2D Leaf-like Structured ZIF Composite-Based Aptamer Sensors for Real-Time In Vivo Insulin Monitoring. ACS Appl. Mater. Interfaces 2022, 14, 28639–28650. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, W.; Li, S.; Li, X.; Yao, X.; Xue, W.; Liang, J.; Chen, J.; Zhou, Z. A label-free electrochemical aptasensor based on platinum@palladium nanoparticles decorated with hemin-reduced graphene oxide as a signal amplifier for glypican-3 determination. Biomater. Sci. 2022, 10, 6804–6817. [Google Scholar] [CrossRef]
- Ateş, A.K.; Er, E.; Çelikkan, H.; Erk, N. Reduced graphene oxide/platinum nanoparticles/nafion nanocomposite as a novel 2D electrochemical sensor for voltammetric determination of aliskiren. New J. Chem. 2017, 41, 15320–15326. [Google Scholar] [CrossRef]
- Brett, C.M.A. Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors. Molecules 2022, 27, 1497. [Google Scholar] [CrossRef]
- Pham, T.S.H.; Hasegawa, S.; Mahon, P.; Guérin, K.; Dubois, M.; Yu, A. Graphene Nanocomposites Based Electrochemical Sensing Platform for Simultaneous Detection of Multi-drugs. Electroanalysis 2022, 34, 435–444. [Google Scholar] [CrossRef]
- Feroze, M.T.; Doonyapisut, D.; Gudal, C.C.; Kim, B.; Chung, C.-H. Impedimetric sensing platform for sensitive carbendazim detection using MOCVD-synthesized copper graphene. Mikrochim. Acta 2023, 190, 489. [Google Scholar] [CrossRef] [PubMed]
- de Macedo, J.F.; Alves, A.A.C.; Sant’Anna, M.V.S.; Cunha, F.G.C.; Oliveira, G.d.A.R.; Lião, L.M.; Sussuchi, E.M. Electrochemical determination of carbendazim in grapes and their derivatives by an ionic liquid-modified carbon paste electrode. J. Appl. Electrochem. 2022, 52, 729–742. [Google Scholar] [CrossRef]
- Yamuna, A.; Chen, T.W.; Chen, S.M.; Jiang, T.Y. Facile synthesis of single-crystalline Fe-doped copper vanadate nanoparticles for the voltammetric monitoring of lethal hazardous fungicide carbendazim. Mikrochim. Acta 2021, 188, 277. [Google Scholar] [CrossRef] [PubMed]
Mixture | Added (µM) | Found (µM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
PBS:skim milk | 25 | 24.60 | 98.40 | 2.80 |
50 | 49.68 | 99.36 | 1.72 | |
PBS:tap water | 25 | 24.48 | 97.94 | 1.37 |
50 | 49.60 | 99.21 | 1.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pushparajah, S.; Hasegawa, S.; Pham, T.S.H.; Shafiei, M.; Yu, A. Facile Synthesis of Platinum Nanoparticle-Embedded Reduced Graphene Oxide for the Detection of Carbendazim. Materials 2023, 16, 7622. https://doi.org/10.3390/ma16247622
Pushparajah S, Hasegawa S, Pham TSH, Shafiei M, Yu A. Facile Synthesis of Platinum Nanoparticle-Embedded Reduced Graphene Oxide for the Detection of Carbendazim. Materials. 2023; 16(24):7622. https://doi.org/10.3390/ma16247622
Chicago/Turabian StylePushparajah, Suthira, Shinichi Hasegawa, Tien Song Hiep Pham, Mahnaz Shafiei, and Aimin Yu. 2023. "Facile Synthesis of Platinum Nanoparticle-Embedded Reduced Graphene Oxide for the Detection of Carbendazim" Materials 16, no. 24: 7622. https://doi.org/10.3390/ma16247622
APA StylePushparajah, S., Hasegawa, S., Pham, T. S. H., Shafiei, M., & Yu, A. (2023). Facile Synthesis of Platinum Nanoparticle-Embedded Reduced Graphene Oxide for the Detection of Carbendazim. Materials, 16(24), 7622. https://doi.org/10.3390/ma16247622