Effect of Alloying Additives and Moulding Technology on Microstructure, Tightness, and Mechanical Properties of CuSn10 Bronze
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Alloys
- (a)
- Green sand mould and core;
- (b)
- Green sand mould, core made in CO2 moulding process;
- (c)
- Mould and core made in CO2 moulding process;
- (d)
- Mould and core made in CO2 moulding process—dried form.
2.2. Microstructure Analysis
2.3. Tightness Test
2.4. Mechanical Property Analysis
3. Results
3.1. Microstructure Analysis and Phase Analysis
3.2. Tightness Test
3.3. Mechanical Property Analysis
4. Conclusions
- -
- The addition of zirconium to CuSn10 bronze led to the refinement of its structure.
- -
- Silicon added to the alloy affected its fluidity and the surface quality of the castings.
- -
- With an increase in the tin content in the alloy, the dendrites of the α(Cu) phase became more developed, and the eutectoid phase (α + δ) proportion increased in the interdendritic spaces.
- -
- Lower tin contents in the alloy positively influenced the castings tightness due to the smaller solidification temperature range.
- -
- The tin content in the alloy affected its hardness, and the amount of the added alloying element also affected its yield strength (YS). YS increased with higher tin concentrations in CuSn10 bronze.
- -
- Considering the analysed technologies (1a–4d), Sample 1 (CuSn10 + Si) exhibited the best tightness parameter. The highest pressure drop in the casting could be observed for Sample 1b (green sand mould, core made in CO2 moulding process).
- -
- Sample 4 (CuSn10 + Zr) showed the greatest pressure drop over time, with two measurements (4a and 4c) ending up off of the established measurement scale. The microstructures of the alloy with the zirconium microaddition displayed visible microporosity; this could have led to leakage in the tested castings.
- -
- The moulding sand type had a minor impact on the results of the tightness tests. However, it was noticeable that most of the samples that exceeded the measurement scale were cast in the green-sand-casting process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engels, G.; Wübbenhorst, H. 5000 Jahre Giessen von Metallen; Giesserei-Verlag: Düsseldorf, Germany, 2007. (In Deutsch) [Google Scholar]
- Rzadkosz, S. Foundry of Copper and Copper Alloys; Akapit: Kraków, Poland, 2013. (In Polish) [Google Scholar]
- Ottaway, B.S. Innovation, production and specialization in early prehistoric copper metallurgy. Eur. J. Archaeol. 2001, 4, 87–112. [Google Scholar] [CrossRef]
- Petan, A.; Petean, I.; Paltinean, G.A.; Filip, M.R.; Borodi, G.; Tudoran, L.B. Microstructural Investigation of Some Bronze Artifacts Discovered in a Dacian Site Using Non-Destructive Methods. Metals 2023, 13, 863. [Google Scholar] [CrossRef]
- Chang, T.; Herting, G.; Goidanich, S.; Sánchez Amaya, J.M.; Arenas, M.A.; Le Bozec, N.; Jin, Y.; Leygraf, C.; Odnevall Wallinder, I. The role of Sn on the long-term atmospheric corrosion of binary Cu-Sn bronze alloys in architecture. Corros. Sci. 2019, 149, 54–67. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, L.; Du, F.; Yuan, X.; Wang, P. The Microstructural Evolution of Cu-Sn-P Alloy during Hot Deformation Process. Materials 2022, 15, 4501. [Google Scholar] [CrossRef] [PubMed]
- Huttunen-Saarivirta, E.; Kilpi, L.; Pasanen, A.T.; Salminen, T.; Ronkainen, H. Tribocorrosion behaviour of tin bronze CuSn12 under a sliding motion in NaCl containing environment: Contact to inert vs. reactive counterbody. Tribol. Int. 2020, 151, 106389. [Google Scholar] [CrossRef]
- Calignano, F.; Manfredi, D.; Marola, S.; Lombardi, M.; Iuliano, L. Production of Dense Cu-10Sn Part by Laser Powder Bed Fusion with Low Surface Roughness and High Dimensional Accuracy. Materials 2022, 15, 3352. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Hu, Z.; Xiao, Y.; Li, Y.; Yang, Y. Study on Interfacial Bonding Properties of NiTi/CuSn10 Dissimilar Materials by Selective Laser Melting. Micromachines 2022, 13, 4. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Zhou, R.; Wang, X.; Wang, Q.; Xie, L.; Li, Z.; Xu, B. First-Principles Study of the Effect of Sn Content on the Structural, Elastic, and Electronic Properties of Cu–Sn Alloys. Crystals 2023, 13, 1532. [Google Scholar] [CrossRef]
- Rzadkosz, S.; Garbacz-Klempka, A.; Kozana, J.; Piękoś, M.; Kranc, M. Structure and properties research of casts made with copper alloys matrix. Arch. Metall. Mater. 2014, 59, 775–778. [Google Scholar] [CrossRef]
- Rzadkosz, S.; Kranc, M.; Garbacz-Klempka, A.; Kozana, J.; Piękoś, M. Refining processes in the copper casting technology. Metalurgija 2015, 54, 259–262. [Google Scholar]
- Rzadkosz, S.; Kozana, J.; Garbacz-Klempka, A.; Piękoś, M.; Cieślak, W. Shaping the Microstructureand Mechanical Properties of Tin Bronzes. Arch. Foundry Eng. 2014, 14, 107–110. [Google Scholar]
- Kohler, F.; Campanella, T.; Nakanishi, S.; Rappaz, M. Application of single pan thermal analysis to Cu–Sn peritectic alloys. Acta Mater. 2008, 56, 1519–1528. [Google Scholar] [CrossRef]
- Manu, K.; Jezierski, J.; Ganesh, M.R.S.; Shankar, K.V.; Narayanan, S.A. Titanium in Cast Cu-Sn Alloys—A Review. Materials 2021, 14, 4587. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, J.; Xue, F.; Wu, Q. Elimination of liquid metal embrittlement cracks during arc cladding of tin bronze on steel sheet. Mater. Lett. 2020, 269, 127646. [Google Scholar] [CrossRef]
- Song, Z.; Tegus, O. The Corrosion Properties of Bronze Alloys in NaCl Solutions. Materials 2023, 16, 5144. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Jiang, X.; Pan, C. Research progress on ancient bronze corrosion in different environments and using different conservation techniques: A review. MRS Adv. 2017, 2, 2033–2041. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, G.; Cao, G.; Wang, C.; Wang, Z. Characterization of corrosion products formed on tin-bronze after 29 years of exposure to Shenyang, China. J. Mater. Res. Technol. 2023, 23, 5270–5279. [Google Scholar] [CrossRef]
- Muller, J.; Laïk, B.; Guillot, I. α-CuSn bronzes in sulphate medium: Influence of the tin content on corrosion processes. Corros. Sci. 2013, 77, 46–51. [Google Scholar] [CrossRef]
- Copper and Copper Alloys; Copper Development Association: McLean, VA, USA, 2018; Available online: http://copperalliance.org.uk (accessed on 9 November 2023).
- Davis, J.R. Copper and Copper Alloys; ASM Specialty Handbook; ASM International: Detroit, MI, USA, 2001. [Google Scholar]
- Zhou, L.; Jiang, Z.H.; Zhao, D.G.; Yu, M.R.; Zhao, H.Y.; Huang, Y.X.; Song, X.G. Effect of Rotation Speed on the Microstructure and Mechanical Properties of Friction-Stir-Welded CuSn6 Tin Bronze. J. Mater. Eng. Perform. 2018, 27, 5581–5590. [Google Scholar] [CrossRef]
- Sobota, J.; Rodak, K.; Nowak, M. Microstructure and properties of tin bronzes produced by the SPD method. Arch. Metall. Mater. 2019, 64, 95–102. [Google Scholar] [CrossRef]
- Paul, C.; Sellamuthu, R. The Effect of Sn Content on the Properties of Surface Refined Cu-Sn Bronze Alloys. Procedia Eng. 2014, 97, 1341–1347. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, R.; Xiong, W.; He, Z.; Liu, T.; Li, Y. Compressive Rheological Behavior and Microstructure Evolution of a Semi-Solid CuSn10P1 Alloy at Medium Temperature and Low Strain. Metals 2022, 12, 143. [Google Scholar] [CrossRef]
- Slamet, S.; Suyitno, D.; Kusumaningtyas, I. Effect of Composition and Pouring Temperatur of Cu-Sn on Fluidity, Density and Mechanical Properties by Investment Casting. In Proceedings of the 1st International Conference on Computer Science and Engineering Technology, Kudus, Indonesia, 25–26 October 2018. [Google Scholar] [CrossRef]
- Audy, J.; Audy, K. Effects of microstructure and chemical composition on strength and impact toughness of tin bronzes. MM Sci. J. 2009, 6, 125–126. [Google Scholar] [CrossRef]
- Nadolski, M. The evaluation of mechanical properties of high-tin bronzes. Arch. Foundry Eng. 2017, 17, 127–130. [Google Scholar] [CrossRef]
- Bartocha, D.; Baron, C.; Suchoń, J. The Influence of Solidification Rate on High-tin Bronze Microstructure. Arch. Foundry Eng. 2019, 19, 89–97. [Google Scholar] [CrossRef]
- Paradela, K.G.; Baptista, L.A.D.S.; Sales, R.C.; Felipe Junior, P.; Ferreira, A.F. Investigation of Thermal Parameters Effects on the Microstructure, Microhardness and Microsegregation of Cu-Sn alloy Directionally Solidified under Transient Heat Flow Conditions. Mater. Res. 2019, 22, e20190259. [Google Scholar] [CrossRef]
- Wang, X.; Song, J.; Zhou, H.; Fan, Z.; Shi, J.; Chen, J.; Xiao, K. Mechanism of dendrite segregation on corrosion behaviour of antique cast low Sn bronze. Corros. Sci. 2023, 222, 111402. [Google Scholar] [CrossRef]
- Qian, Q.; Baohong, T.; Tubing, Y.; Yi, Z.; Jingkun, A.; Yong, L.; Zhiyang, Z.; Jing, K. Investigation of deformation comprised microstructure and precipitation of Cu–Sn–Ti alloy during hot deformation. J. Mater. Res. Technol. 2023, 26, 6597–6608. [Google Scholar] [CrossRef]
- Li, Y.; He, K.; Liao, C.; Pan, C. Measurements of mechanical properties of α-phase in Cu–Sn alloys by using instrumented nanoindentation. J. Mater. Res. 2012, 27, 192–196. [Google Scholar] [CrossRef]
- Szajnar, J.; Kondracki, M.; Stawarz, M. Modification of CuSn8 tin bronze and its influence on tin segregation. Arch. Foundry Eng. 2003, 3, 315–322. [Google Scholar]
- Romankiewicz, F.; Głazowska, I. Modification of CuSn10 tin bronze. Solidif. Met. Alloy. 1998, 37, 113–116. [Google Scholar]
- Głazowska, I.; Romankiewicz, F.; Krasicka-Cydzik, E.; Michalski, M. Structure of phosphor tin bronze CuSn10P modified with mixture of microadditives. Arch. Foundry 2005, 5, 94–99. [Google Scholar]
- Karthik, M.; Abhinav, J.; Shankar, K.V. Morphological and Mechanical Behaviour of Cu–Sn Alloys—A review. Met. Mater. Int. 2021, 27, 1915–1946. [Google Scholar] [CrossRef]
- Popova, E.N.; Sudareva, S.V.; Romanov, E.P.; Dergunova, E.A.; Abdyukhanov, I.M.; Vorob’eva, A.E.; Elokhina, L.V. Effect of alloying on the structure of bronze with enhanced tin content. Phys. Metals Metallogr. 2007, 103, 160–173. [Google Scholar] [CrossRef]
- Ri, K.; Komkov, V.G.; Ri, E.K. Effect of alloying elements on the physicomechanical properties of copper and tin bronze. Russ. Metall. Met. 2014, 9, 750–755. [Google Scholar] [CrossRef]
- Kozana, J.; Garbacz-Klempka, A.; Piękoś, M.; Perek-Nowak, M.; Pałka, P. Experimental Investigation and Thermodynamic Modeling of Influence of Nickel and Titanium Content on the Structure and Selected Properties of Tin Bronzes. Materials 2021, 14, 5944. [Google Scholar] [CrossRef]
- Kozana, J.; Garbacz-Klempka, A.; Piękoś, M.; Czekaj, E.; Perek-Nowak, M. Assessment of impact of nickel additions on tin bronzes. Arch. Foundry Eng. 2018, 18, 53–60. [Google Scholar] [CrossRef]
- Taslicukur Ozturk, Z.; Altuğ, G.; Polat, S.; Atapek, S.; Türedi, E. A microstructural study on CuSn10 bronze produced by sand and investment casting techniques, XXI. In Proceedings of the International Conference on Metallurgy and Materials, Brno, Czech Republic, 23–25 May 2012. [Google Scholar]
- Kadhim, H.A.; Abed, I.J. Investigation Wear Behaviour of Tin Bronze Alloy Prepared by Different Casting Techniques. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1094, 012126. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, G.; Wang, H.; Gao, G.; Chen, S.; Yang, D.; Fan, Y.; Zhang, G.; Xu, H. Microstructure and tribological behaviors of diffusion bonded powder sintered Cu–Sn based alloys. Mater. Res. Express 2021, 8, 116505. [Google Scholar] [CrossRef]
- Shang, Q.; Yu, A.; Wu, J.; Shi, C.; Niu, W. Influence of heat affected zone on tribological properties of CuSn6 bronze laser dimple textured surface. Tribol. Int. 2017, 105, 158–165. [Google Scholar] [CrossRef]
- Shi, Z.; Xu, H.; Zhang, G.; Liu, Y.; Ren, X. Effect of Bi Content on the Microstructure, Mechanical and Tribological Properties of Cu-Sn Alloy. Materials 2023, 16, 6658. [Google Scholar] [CrossRef] [PubMed]
- So, S.-M.; Kim, K.-Y.; Lee, S.-J.; Yu, J.; Lim, H.-A.; Oh, M.-S. Effects of Sn content and hot deformation on microstructure and mechanical properties of binary high Sn content Cu–Sn alloys. Mater. Sci. Eng. A 2020, 796, 140054. [Google Scholar] [CrossRef]
- Li, Y.S.; Wang, D.W. Standard Simple of Tin Bronze for Casting Develepment. Adv. Mater. Res. 2014, 1004–1005, 1186–1192. [Google Scholar] [CrossRef]
- Baumeister, G.; Buqezi-Ahmeti, D.; Glaser, J.; Ritzhaupt-Kleissl, H.-J. New approaches in microcasting: Permanent mold casting and composite casting. Microsyst Technol 2011, 17, 289–300. [Google Scholar] [CrossRef]
- Sergejevs, A.; Kromanis, A.; Ozolins, J.; Gerins, E. Influence of Casting Velocity on Mechanical Properties and Macro-Structure of Tin Bronzes. Key Eng. Mater. 2016, 674, 81–87. [Google Scholar] [CrossRef]
- Jones, T.; Strachan, R.; Mackie, D.; Cooper, M.; Frame, B.; Vorstius, J. Computational Fluid Dynamic Simulations of solidification for Improve speed of Continuous Cast copper. Eng. Sci. Technol. 2021, 24, 24–92. [Google Scholar] [CrossRef]
- Sato, T.; Hirai, Y.; Kobayashi, T. Development of Lead-Free Bronze with Sulfide Dispersion for Sliding Applications. Inter. Met. 2017, 11, 148–154. [Google Scholar] [CrossRef]
- Bazhenov, V.E.; Titov, A.Y.; Shkalei, I.V.; Sannikov, A.V.; Nikitina, A.A.; Plisetskaya, I.V.; Bazlov, A.I.; Mezrin, A.M. Effect of the Cooling Rate on the Microstructure and Properties of C92900 Bronze. Russ. J. Non-Ferr. Met. 2021, 62, 274–285. [Google Scholar] [CrossRef]
- Schmidt, R.F.; Schmidt, D.G. Selection and Application of Copper Alloy Casting. In ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Detroit, MI, USA, 1997; pp. 1150–1180. [Google Scholar]
- Schmidt, R.F.; Schmidt, D.G.; Sahoo, M. Copper and Copper Alloys. In ASM Handbook Volume 15: Casting; ASM International: Detroit, MI, USA, 1998; pp. 1697–1734. [Google Scholar]
- EN 1982:2017; Copper and Copper Alloys—Ingots and Castings. European Committee for Standardization: Brussels, Belgium, 2017.
- PN-91/H87026. Available online: https://kigema.com/bronze-brass-standards/ba93-pn-91-h-87026/ (accessed on 9 November 2023).
- PN-EN ISO 6892-1:2010; Metals—Tensile Test—Part 1: Room Temperature Test Method. Polish Committee for Standardization: Warsaw, Poland, 2010.
- PN-EN 1982:2017-10; Copper and Copper Alloys—Pigs and Castings. Polish Committee for Standardization: Warsaw, Poland, 2017.
No. | Sn | Fe | Si | Mn | Pb | Zn | Zr | P | Cu |
---|---|---|---|---|---|---|---|---|---|
(wt%) | |||||||||
0 | 10.1 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.05 | Bal. |
No. | Sn | Fe | Si | Mn | Pb | Zn | Zr | P | Cu |
---|---|---|---|---|---|---|---|---|---|
(wt%) | |||||||||
1W | 9.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.20 | Bal. |
2W | 10.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.05 | Bal. |
3W | 11.02 | 0.00 | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.18 | Bal. |
No. | Sn | Fe | Si | Mn | Pb | Zn | Zr | P | Cu |
---|---|---|---|---|---|---|---|---|---|
(wt%) | |||||||||
1 | 9.30 | 0.00 | 0.04 | 0.00 | 0.08 | 0.00 | 0.00 | 0.21 | Bal. |
2 | 10.2 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.15 | Bal. |
3 | 10.1 | 0.00 | 0.00 | 0.00 | 0.06 | 0.23 | 0.00 | 0.05 | Bal. |
4 | 9.74 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.05 | Bal. |
Spectrum Label | Cu | Sn | Pb | Total |
---|---|---|---|---|
Spectrum 1 | 67.65 | 32.35 | - | 100.00 |
Spectrum 2 | 67.36 | 32.64 | - | 100.00 |
Spectrum 3 | 95.21 | 4.79 | - | 100.00 |
Spectrum 4 | 95.69 | 4.31 | - | 100.00 |
Spectrum 5 | 37.23 | 13.22 | 49.54 | 100.00 |
Spectrum Label | Cu | Zr | Sn | Pb | P | Total |
---|---|---|---|---|---|---|
Spectrum 1 | 96.58 | - | 3.42 | - | - | 100.00 |
Spectrum 2 | 96.67 | - | 3.33 | - | - | 100.00 |
Spectrum 3 | 86.93 | - | 13.07 | - | - | 100.00 |
Spectrum 4 | 87.45 | - | 12.55 | - | - | 100.00 |
Spectrum 5 | 67.17 | - | 32.83 | - | - | 100.00 |
Spectrum 6 | 67.37 | - | 32.63 | - | - | 100.00 |
Spectrum 7 | 71.88 | 13.68 | 12.32 | 1.66 | 0.46 | 100.00 |
Spectrum 8 | 71.53 | 15.97 | 12.50 | - | - | 100.00 |
Spectrum 9 | 41.11 | 38.54 | 8.31 | 3.76 | 8.28 | 100.00 |
Sample | Tightness Test Result (cm3/min) |
---|---|
1W (CuSn9) | 2.37 |
2W (CuSn10) | 4.29 |
3W (CuSn11) | 3.65 |
Sample | Tightness Test Result (cm3/min) |
---|---|
1a | 3.65 |
1b | 12.34 |
1c | 2.68 |
1d | 3.79 |
2a | 7.71 |
2c | 3.24 |
2d | 3.49 |
3c | 3.65 |
3d | 6.16 |
4a | 46.0 |
4d | 59.51 |
Sample | UTS (MPa) | YS (MPa) | HBW |
---|---|---|---|
1W | 344 | 159 | 73 |
2W | 271 | 162 | 83 |
3W | 333 | 180 | 85 |
Sample | UTS (MPa) | YS (Mpa) | HBW |
---|---|---|---|
1a | 378 | 164 | 73 |
1b | 342 | 166 | 85 |
1d | 379 | 161 | 74 |
2a | 368 | 160 | 76 |
2b | 352 | 180 | 83 |
2d | 340 | 168 | 82 |
3a | 402 | 181 | 83 |
3b | 394 | 166 | 83 |
3d | 356 | 165 | 74 |
4a | 371 | 162 | 72 |
4b | 352 | 162 | 80 |
4d | 382 | 180 | 85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witasiak, D.; Garbacz-Klempka, A.; Papaj, M.; Papaj, P.; Maj, M.; Piękoś, M.; Kozana, J. Effect of Alloying Additives and Moulding Technology on Microstructure, Tightness, and Mechanical Properties of CuSn10 Bronze. Materials 2023, 16, 7593. https://doi.org/10.3390/ma16247593
Witasiak D, Garbacz-Klempka A, Papaj M, Papaj P, Maj M, Piękoś M, Kozana J. Effect of Alloying Additives and Moulding Technology on Microstructure, Tightness, and Mechanical Properties of CuSn10 Bronze. Materials. 2023; 16(24):7593. https://doi.org/10.3390/ma16247593
Chicago/Turabian StyleWitasiak, Dawid, Aldona Garbacz-Klempka, Marcin Papaj, Piotr Papaj, Maria Maj, Marcin Piękoś, and Janusz Kozana. 2023. "Effect of Alloying Additives and Moulding Technology on Microstructure, Tightness, and Mechanical Properties of CuSn10 Bronze" Materials 16, no. 24: 7593. https://doi.org/10.3390/ma16247593