X-ray Excited Optical Luminescence of Eu in Diamond Crystals Synthesized at High Pressure High Temperature
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis and Purification
2.3. Methods
2.4. Simulation
3. Results and Discussions
3.1. Structure of Pyrolyzate
3.2. X-ray Diffraction and Phase Analysis
3.3. XRF, XEOL, TEM, and Raman Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cotton, S. Lanthanide and Actinide Chemistry; John Wiley & Sons Ltd.: Chichester, UK, 2006. [Google Scholar]
- Hossain, M.K.; Khan, M.I.; El-Denglawey, A. Corrigendum to “A review on biomedical applications, prospects, and challenges of rare earth oxides”. Appl. Mater. Today 2022, 27, 101104. [Google Scholar] [CrossRef]
- Hossain, M.K.; Ahmed, M.H.; Khan, I.; Miah, M.S.; Hossain, S. Recent Progress of Rare Earth Oxides for Sensor, Detector, and Electronic Device Applications: A Review. ACS Appl. Electron. Mater. 2021, 3, 4255–4283. [Google Scholar] [CrossRef]
- Hossain, M.K.; Rubel, M.; Akbar, A.; Ahmed, M.H.; Haque, N.; Rahman, F.; Hossain, J.; Hossain, K.M. A review on recent applications and future prospects of rare earth oxides in corrosion and thermal barrier coatings, catalysts, tribological, and environmental sectors. Ceram. Int. 2022, 48, 32588–32612. [Google Scholar] [CrossRef]
- Hossain, M.K.; Raihan, G.A.; Akbar, A.; Rubel, M.H.K.; Ahmed, M.H.; Khan, I.; Hossain, S.; Sen, S.K.; Jalal, M.I.E.; El-Denglawey, A. Current Applications and Future Potential of Rare Earth Oxides in Sustainable Nuclear, Radiation, and Energy Devices: A Review. ACS Appl. Electron. Mater. 2022, 4, 3327–3353. [Google Scholar] [CrossRef]
- Magyar, A.; Hu, W.; Shanley, T.; Flatté, M.E.; Hu, E.; Aharonovich, I. Synthesis of luminescent europium defects in diamond. Nat. Commun. 2014, 5, 3523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotoma, S.; Hsieh, F.-J.; Chang, H.-C. Biohybrid fluorescent nanodiamonds as dual-contrast markers for light and electron microscopies. J. Chin. Chem. Soc. 2018, 65, 1136–1146. [Google Scholar] [CrossRef]
- Kidalov, S.; Zamoryanskaya, M.; Kravez, V.; Sharonova, L.; Shakhov, F.; Yudina, E.; Artamonova, T.; Khodorkovskii, M.; Vul’, A. Photo- and cathodoluminescence spectra of diamond single crystals formed by sintering of detonation nanodiamonds. Nanosyst. Phys. Chem. Math. 2019, 10, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Shibata, K.; Kamioka, H.; Kaminsky, F.V.; Koptil, V.I.; Svisero, D.P. Rare earth element patterns of carbonado and yakutite: Evidence for their crustal origin. Miner. Mag. 1993, 57, 607–611. [Google Scholar] [CrossRef] [Green Version]
- Ekimov, E.A.; Zibrov, I.P.; Malykhin, S.; Khmel’Nitskii, R.A.; Vlasov, I.I. Luminescence properties of diamond prepared in the presence of rare-earth elements. Inorg. Mater. 2017, 53, 809–815. [Google Scholar] [CrossRef]
- Malashkevich, G.E.; Lapina, V.; Semkova, G.I.; Pershukevich, P.P.; Shevchenko, G.P. Luminescence of Eu3+ ions in ultradisperse diamond powders. JETP Lett. 2003, 77, 291–294. [Google Scholar] [CrossRef]
- Chen, X.; Song, J.; Chen, X.; Yang, H. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 2019, 48, 3073–3101. [Google Scholar] [CrossRef] [PubMed]
- WebElements. The Periodic Table on the WWW. Available online: https://www.webelements.com (accessed on 10 January 2023).
- Tikhonov, V.I.; Kapustin, V.K.; Lebedev, V.T.; Sovestnov, A.E.; Bairamukov, V.; Mishin, K.Y. A carbon composite based on pyrolyzed diphthalocyanines for immobilization of high-level waste from nuclear industry. Radiochemistry 2016, 58, 545–555. [Google Scholar] [CrossRef]
- Lebedev, V.T.; Sovestnov, A.E.; Tikhonov, V.I.; Chernenkov, Y. Structure of the amorphous phase of pyrolisates of lanthanum diphthalocyanine according to X-ray scattering data. J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 2017, 11, 38–48. [Google Scholar] [CrossRef]
- Moskalev, P.N.; Sibilev, A.I. Action of gaseous ammonia and water on neodymium diphthalocyanine. Russ. Chem. Bull. 1998, 47, 1406–1408. [Google Scholar] [CrossRef]
- Lebedev, V.M.; Lebedev, V.T.; Orlova, D.N.; Sovestnov, A.E.; Tikhonov, V.I. Effect of annealing temperature on the structure of pyrolysates of diphthalocyanines of rare-earth elements: Neutron research. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2014, 8, 1002–1009. [Google Scholar] [CrossRef]
- Lebedev, V.M.; Lebedev, V.T.; Orlova, D.N.; Tikhonov, V.I. Study of the structure of carbon matrices for radionuclide encapsulation by small-angle neutron scattering. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2014, 8, 411–417. [Google Scholar] [CrossRef]
- Shakhov, F.M.; Abyzov, A.M.; Takai, K. Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature. J. Solid State Chem. 2017, 256, 72–92. [Google Scholar] [CrossRef]
- Osipov, V.Y.; Shakhov, F.M.; Bogdanov, K.V.; Takai, K.; Hayashi, T.; Treussart, F.; Baldycheva, A.; Hogan, B.T.; Jentgens, C. High-Quality Green-Emitting Nanodiamonds Fabricated by HPHT Sintering of Polycrystalline Shockwave Diamonds. Nanoscale Res. Lett. 2020, 15, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Oshima, R.; Iizuka, K.; Vul, A.Y.; Shakhov, F.M. Single crystal diamond particles formed by the reaction of carbon black and solid alcohol under high-pressure and high-temperature. J. Cryst. Growth 2022, 587, 126646. [Google Scholar] [CrossRef]
- Abbaschian, R.; Zhu, H.; Clarke, C. High pressure-high temperature growth of diamond crystals using split sphere apparatus. Diam. Relat. Mater. 2005, 14, 1916–1919. [Google Scholar] [CrossRef]
- D’Haenens-Johansson, U.; Moe, K.; Johnson, P.; Wang, W. Near-Colorless HPHT-grown synthetic diamonds from Advanced Optical Technology Co. Gems Gemol. 2012, 48, 141. [Google Scholar]
- Chen, C.; Chen, Q. Recent Development in Diamond Synthesis. Int. J. Mod. Phys. B 2008, 22, 309–326. [Google Scholar] [CrossRef]
- D’Haenens-Johansson, U.F.S.; Butler, J.E.; Katrusha, A.N. Synthesis of Diamonds and Their Identification. Rev. Miner. Geochem. 2022, 88, 689–753. [Google Scholar] [CrossRef]
- Davydov, V.; Rakhmanina, A.; Agafonov, V.; Khabashesku, V. On the nature of simultaneous formation of nano- and micron-size diamond fractions under pressure–temperature-induced transformations of binary mixtures of hydrocarbon and fluorocarbon compounds. Carbon 2015, 90, 231–233. [Google Scholar] [CrossRef]
- Ekimov, E.; Kondrin, M. High-pressure, high-temperature synthesis and doping of nanodiamonds. Semicond. Semimet. 2020, 103, 161–199. [Google Scholar] [CrossRef]
- Ekimov, E.; Kondrin, M.; Lyapin, S.; Grigoriev, Y.; Razgulov, A.; Krivobok, V.; Gierlotka, S.; Stelmakh, S. High-pressure synthesis and optical properties of nanodiamonds obtained from halogenated adamantanes. Diam. Relat. Mater. 2020, 103, 107718. [Google Scholar] [CrossRef]
- Sung, J. Handbook of Industrial Diamonds: Superabrasives and Diamond Syntheses, 1st ed.; Jenny Stanford Publishing Pte. Ltd.: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Mukhamedshina, N.M.; Mirsagatova, A.A.; Zinov’ev, V.G. Determination of ZnSe(Te) stoichiometry and dopant content by X-ray analysis. J. Radioanal. Nucl. Chem. 2005, 264, 97–100. [Google Scholar] [CrossRef]
- Streli, C.; Wobrauschek, P.; Kregsamer, P. X-ray Fluorescence Spectroscopy, Applications. In Encyclopedia of Spectroscopy and Spectrometry; Lindon, J., Tranter, G., Holmes, J., Eds.; Academia Press Ltd.: London, UK, 2000; pp. 2478–2487. [Google Scholar] [CrossRef]
- Zinovyev, V.; Lebedev, V.; Mitropolsky, I.; Shulyak, G.; Sushkov, P.; Tyukavina, T.; Okunev, I.; Ershov, K.; Balin, D. Determination of Lanthanides and 3D Metals in Endometallofullerenes Water Solutions by X-ray Fluorescence Spectrometry. Intern. Sci. J. Eurasian Union Sci. EUS 2019, 8, 40–44. [Google Scholar] [CrossRef]
- Bunker, G. Introduction to XAFS. In A Practical Guide to X-ray Absorption Fine Structure Spectroscopy; Cambridge Press: Cambridge, UK, 2010. [Google Scholar]
- Taylor, R. The development of X-ray Excited Optical Luminescence (XEOL) Spectroscopic Techniques for Mineralogical and Petrological Applications. Ph.D. Thesis, University of St. Andrews, St. Andrews, UK, 2013. Available online: http://research-repository.st-andrews.ac.uk/ (accessed on 20 June 2013).
- Allinger, N.L. MM2 Force Field. J. Am. Chem. Soc. 1977, 99, 8127–8134. [Google Scholar] [CrossRef]
- Laqua, G.; Musso, H.; Boland, W.; Ahlrichs, R. Force field calculations (MM2) of carbon lattices. J. Am. Chem. Soc. 1990, 112, 7391–7392. [Google Scholar] [CrossRef]
- Svergun, D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 1992, 25, 495–503. [Google Scholar] [CrossRef]
- Feigin, L.A.; Svergun, D.I. Structure Analysis by Small-Angle X-ray and Neutron Scattering; Plenum Press: New York, NY, USA, 1987. [Google Scholar]
- Manalastas-Cantos, K.; Konarev, P.V.; Hajizadeh, N.R.; Kikhney, A.G.; Petoukhov, M.V.; Molodenskiy, D.S.; Panjkovich, A.; Mertens, H.D.T.; Gruzinov, A.; Borges, C.; et al. ATSAS 3.0: Expanded functionality and new tools for small-angle scattering data analysis. J. Appl. Crystallogr. 2021, 54, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, V.S.; Semenov, V.G.; Bayramukov, V.Y. Transmission electron microscopy and Mössbauer spectroscopy of europium diphthalocyanine. Commun. NRC KI–PNPI. 2022, 3070, 1–16. [Google Scholar]
- Li, L.; Reich, S.; Robertson, J. Defect energies of graphite: Density-functional calculations. Phys. Rev. B 2005, 72, 184109. [Google Scholar] [CrossRef] [Green Version]
- Osadchy, A.V.; Vlasov, I.I.; Kudryavtsev, O.S.; Sedov, V.S.; Ralchenko, V.G.; Batygov, S.H.; Savin, V.V.; Ershov, P.A.; Chaika, V.A.; Narikovich, A.S.; et al. Luminescent diamond window of the sandwich type for X-ray visualization. Appl. Phys. A 2018, 124, 807. [Google Scholar] [CrossRef]
- Mironov, V.P.; Emelyanova, A.S.; Shabalin, S.A.; Bubyr, E.V.; Kazakov, L.V.; Martynovich, E.F. X-ray luminescence in diamonds and its application in industry. In Proceedings of the XVIII International Conference on Luminescence and Laser Physics (LLPH), Irkutsk, Russia, 5–10 July 2021; p. 020010. [Google Scholar] [CrossRef]
- Toffolo, M.B.; Ricci, G.; Caneve, L.; Kaplan-Ashiri, I. Luminescence reveals variations in local structural order of calcium carbonate polymorphs formed by different mechanisms. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiou, J.W.; Ray, S.C.; Peng, S.I.; Chuang, C.H.; Wang, B.Y.; Tsai, H.M.; Pao, C.W.; Lin, H.-J.; Shao, Y.C.; Wang, Y.F.; et al. Nitrogen-Functionalized Graphene Nanoflakes (GNFs:N): Tunable Photoluminescence and Electronic Structures. J. Phys. Chem. C 2012, 116, 16251–16258. [Google Scholar] [CrossRef] [Green Version]
- Zhigunov, D.; Abdullaev, O.R.; Ivannikov, P.V.; Shishonok, E.M.; Urbanovich, S.I.; Kashkarov, P.K. Photo- and cathodoluminescence of cubic boron nitride micropowders activated by Tm, Tb, and Eu rare-earth ions. Mosc. Univ. Phys. Bull. 2016, 71, 97–104. [Google Scholar] [CrossRef]
- Kaplyanskiĭ, A.A.; Kulinkin, A.B.; Kutsenko, A.B.; Feofilov, S.P.; Zakharchenya, R.I.; Vasilevskaya, T.N. Optical spectra of triply-charged rare-earth ions in polycrystalline corundum. Phys. Solid State 1998, 40, 1310–1316. [Google Scholar] [CrossRef]
- Smagin, V.P.; Khudyakov, A.P.; Biryukov, A.A. Luminescence of Eu3+ Ions in a Matrix of a Fluorinated Yttrium–Aluminum Composition. Phys. Solid State 2020, 62, 325–331. [Google Scholar] [CrossRef]
- Dos, S.; Rezende, M.V.; Montes, P.J.R.; Andrade, A.B.; Macedo, Z.S.; Valerio, M.E.G. Mechanism of X-ray excited optical luminescence (XEOL) in europium doped BaAl2O4 phosphor. Phys. Chem. Chem. Phys. 2016, 18, 17646–17654. [Google Scholar]
- Jayaramaiah, J.; Lakshminarasappa, B.; Nagabhushana, B. Luminescence studies of europium doped yttrium oxide nano phosphor. Sens. Actuators B Chem. 2012, 173, 234–238. [Google Scholar] [CrossRef]
- Ravichandran, D.; Roy, R.; Chakhovskoi, A.; Hunt, C.; White, W.; Erdei, S. Fabrication of Y3Al5O12:Eu thin films and powders for field emission display applications. J. Lumin. 1997, 71, 291–297. [Google Scholar] [CrossRef]
- Tanner, P.A. Some misconceptions concerning the electronic spectra of tri-positive europium and cerium. Chem. Soc. Rev. 2013, 42, 5090–5101. [Google Scholar] [CrossRef]
- Vlasov, I.I.; Shenderova, O.A. Raman and Photoluminescence Spectroscopy of Detonation Nanodiamonds in Detonation Nanodiamonds: Science and Applications; Vul, A.Y., Shenderova, O.A., Eds.; Pan Stanford Publishing Pte. Ltd.: Danvers, MA, USA, 2014; pp. 121–149. [Google Scholar]
- Koniakhin, S.V.; Utesov, O.I.; Terterov, I.N.; Siklitskaya, A.V.; Yashenkin, A.G.; Solnyshkov, D. Raman Spectra of Crystalline Nanoparticles: Replacement for the Phonon Confinement Model. J. Phys. Chem. C 2018, 122, 19219–19229. [Google Scholar] [CrossRef] [Green Version]
- Lyutoev, V.P.; Glukhov, Y.V.; Schanov, M.F. X-ray Luminescent Method for Determining Nitrogen Defects in Diamonds. Patent RU 2 215 285 C1, 27 October 2003. [Google Scholar]
- Isaenko, S.I. X-ray stimulated luminescence of nitrogen defects in natural diamonds/Structure, substance, history of the lithosphere of the Timan-Severoural segment. In Proceedings of the Information Materials of the 9th Scientific Conference of the Institute of Geology of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia, 7–8 December 2000; pp. 56–58. [Google Scholar]
- Tretyakova, L.I.; Lyukhin, A.M. Impurity, defect centers and inclusions in natural diamonds are characteristics of the cosmogenic-impact-metamorphogenic-metasomatic history of their genesis. Ural. Geol. J. 2017, 3, 43–74. [Google Scholar]
- Nadolinny, V.; Komarovskikh, A.; Palyanov, Y. Incorporation of Large Impurity Atoms into the Diamond Crystal Lattice: EPR of Split-Vacancy Defects in Diamond. Crystals 2017, 7, 237. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, T.; Okushi, H.; Uda, T. Shallow Donor State Due to Nitrogen-Hydrogen Complex in Diamond. Phys. Rev. Lett. 2002, 88, 066402. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, C.; Liu, J.; Wei, J.; Ye, H. Diamond with nitrogen: States, control, and applications. Funct. Diam. 2021, 1, 63–82. [Google Scholar] [CrossRef]
- Heaney, P.J.; Vicenzi, E.P.; De, S. Strange Diamonds: The Mysterious Origins of Carbonado and Framesite. Elements 2005, 1, 85–89. [Google Scholar] [CrossRef]
- Nadolinny, V.; Shatsky, V.; Sobolev, N.; Twitchen, D.; Yuryeva, O.; Vasilevsky, I.; Lebedev, V. Observation and interpretation of paramagnetic defects in Brazilian and Central African carbonados. Am. Miner. 2003, 88, 11–17. [Google Scholar] [CrossRef]
- Vul, A.Y.; Shenderova, O.A. Carbon at the Nanoscale, in Detonation Nanodiamonds: Science and Applications; Vul, A.Y., Shenderova, O.A., Eds.; Pan Stanford Publishing Pte. Ltd.: Danvers, MA, USA, 2014; pp. 1–35. [Google Scholar]
- Palyanov, Y.N.; Borzdov, Y.M.; Kupriyanov, I.N.; Khohkhryakov, A.F.; Nechaev, D.V. Rare-earth metal catalysts for high-pressure synthesis of rare diamonds. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Vanpoucke, D.E.P.; Nicley, S.S.; Raymakers, J.; Maes, W.; Haenen, K. Can europium atoms form luminescent centres in diamond: A combined theoretical–experimental study. Diam. Relat. Mater. 2019, 94, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Sedov, V.S.; Kouznetsov, S.; Martyanov, A.K.; Proydakova, V.; Ralchenko, V.G.; Khomich, A.; Voronov, V.V.; Batygov, S.; Kamenskikh, I.; Spassky, D.; et al. Diamond–Rare Earth Composites with Embedded NaGdF4:Eu Nanoparticles as Robust Photo- and X-ray-Luminescent Materials for Radiation Monitoring Screens. ACS Appl. Nano Mater. 2020, 3, 1324–1331. [Google Scholar] [CrossRef]
- Yudina, E.B.; Aleksenskii, A.E.; Bogdanov, S.A.; Bukalov, S.S.; Leites, L.A.; Radishev, D.B.; Vikharev, A.L.; Vul’, A.Y. CVD Nanocrystalline Diamond Film Doped with Eu. Materials 2022, 15, 5788. [Google Scholar] [CrossRef] [PubMed]
Sample | Eu Content | Purification, HCl | Treatment, CHBr3 | Diamond, wt.% | Graphite, wt.% |
---|---|---|---|---|---|
SEu1 | 5.7 wt.% | – | – | – | – |
SEu2 | 88 ± 5 ppm | + | – | 52 | 48 |
SEu3 | 55 ± 5 ppm | + | + | 95 | 5 |
r1, nm | r2, nm | R3, nm | r3, nm | R4, nm | r4, nm |
---|---|---|---|---|---|
0.065 ± 0.003 | 0.24 ± 0.03 | 0.42 ± 0.002 | 0.11 ± 0.03 | 0.44 ± 0.05 | 0.40 ± 0.02 |
Wavenumber, cm−1 | Nitrogen Defect Type | Concentration, ppm |
---|---|---|
1132 | N0 (C or P1) | 156 |
1280 | 2N (A-aggregate) | 287 |
1331 | N+ (C+) | 28 |
Sum | 471 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedev, V.T.; Shakhov, F.M.; Vul, A.Y.; Zakharov, A.A.; Zinoviev, V.G.; Orlova, V.A.; Fomin, E.V. X-ray Excited Optical Luminescence of Eu in Diamond Crystals Synthesized at High Pressure High Temperature. Materials 2023, 16, 830. https://doi.org/10.3390/ma16020830
Lebedev VT, Shakhov FM, Vul AY, Zakharov AA, Zinoviev VG, Orlova VA, Fomin EV. X-ray Excited Optical Luminescence of Eu in Diamond Crystals Synthesized at High Pressure High Temperature. Materials. 2023; 16(2):830. https://doi.org/10.3390/ma16020830
Chicago/Turabian StyleLebedev, Vasily T., Fedor M. Shakhov, Alexandr Ya. Vul, Arcady A. Zakharov, Vladimir G. Zinoviev, Vera A. Orlova, and Eduard V. Fomin. 2023. "X-ray Excited Optical Luminescence of Eu in Diamond Crystals Synthesized at High Pressure High Temperature" Materials 16, no. 2: 830. https://doi.org/10.3390/ma16020830
APA StyleLebedev, V. T., Shakhov, F. M., Vul, A. Y., Zakharov, A. A., Zinoviev, V. G., Orlova, V. A., & Fomin, E. V. (2023). X-ray Excited Optical Luminescence of Eu in Diamond Crystals Synthesized at High Pressure High Temperature. Materials, 16(2), 830. https://doi.org/10.3390/ma16020830