Tailings Utilization and Zinc Extraction Based on Mechanochemical Activation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- -
- for the mass fraction of tailings (t) = 43% (800 kg), the logarithmic dependence of the filling strength on the hardening duration (R2 = 0.98) is established:
- -
- for the mass fraction of tailings (t) = 44% (835 kg), the logarithmic dependence of the filling strength on the hardening duration (R2 = 0.97) is established:
- -
- for the mass fraction of tailings (t) = 45% (860 kg), the logarithmic dependence of the bookmark strength on the hardening duration (R2 = 0.97) is established:
4. Discussion
5. Conclusions
- -
- for the first time, during agitation leaching, a decrease in the NaCl mass concentration, from 13 to 1% at the H2SO4 concentration from 0.5 to 0.6%, has been found to lead to the 3-time Zn yield increase (accompanied by the local maximum area formation (Zn = 91%) from the pulp, according to the polynomial dependence.
- -
- at a low rotation speed of the disintegrator rotors, for the first time, the H2SO4 concentration decreased from 0.8 to 0.26% at a NaCl concentration from 3 to 4%, and has been established to lead to a Zn yield increase in the pulp, from 64 to 91%. At that, the local maximum area has been shifted towards a lower consumption of sulfuric acid and its area by an order of magnitude is higher than that in the case of agitation leaching.
- -
- the amount of zinc concentration in the mechanically activated pulp is increased from three to four times, with a decrease in the concentration of sodium chloride and an increase in the fraction of sulfuric acid in the leaching solution.
- -
- the peculiarities of the strength gain mechanism by the filling mass caused by the effect of mechanical activation on the components of the mixture composition include the increase in the mass uniaxial compression strength according to the logarithmic law to the required values, and the main increase in the strength characteristics is achieved during the first 28 days of hardening.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanvar, H.; Mishra, B. Comprehensive utilization of bauxite residue for simultaneous recovery of base metals and critical elements. Sustain. Mater. Technol. 2022, 33, e00466. [Google Scholar] [CrossRef]
- Huber, M.; Iakovleva, O. Zn-Pb Dumps, Environmental Pollution and Their Recultivation, Case of Ruda Śląska-Wirek, S Poland. Mining 2022, 2, 616–628. [Google Scholar] [CrossRef]
- Parron-Rubio, M.E.; Garcia-Manrique, J.; Gonzalez-Herrera, A.; Perez-Garcia, F.; Rubio-Cintas, M.D. Strategies to Incorporate Ground-Granulated Blast-Furnace Slag and Copper Slag into Ultra-high-Performance Fiber-Reinforced Concrete. J. Mater. Civ. Eng. 2022, 34, 04022338. [Google Scholar] [CrossRef]
- Chen, T.; Wen, X.-C.; Zhang, L.-J.; Tu, S.-C.; Tu, S.-C.; Zhang, J.-H.; Sun, R.-N.; Yan, B. The geochemical and mineralogical controls on the release characteristics of potentially toxic elements from lead/zinc (Pb/Zn) mine tailings. Environ. Pollut. 2022, 315, 120328. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Chen, Z.; Ding, K.; He, Z.; Qiu, R. Heavy metal contamination affects the core microbiome and assembly processes in metal mine soils across Eastern China. J. Hazard. Mater. 2023, 443, 130241. [Google Scholar] [CrossRef]
- Golik, V.I.; Razorenov, Y.I.; Polukhin, O.N. Metal extraction from ore benefication codas by means of lixiviation in a disintegrator. Int. J. Appl. Eng. 2015, 17, 38105–38109. [Google Scholar]
- Klyuev, R.V.; Golik, V.I.; Bosikov, I.I. Comprehensive assessment of hydrogeological conditions for formation of mineral water resources of the Nizhne-Karmadon deposit. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2021, 332, 206–218. [Google Scholar] [CrossRef]
- Fischer, A.M.; Van Hamme, J.D.; Gardner, W.C.; Fraser, L.H. Impacts from Topsoil Stockpile Height on Soil Geochemical Properties in Two Mining Operations in British Columbia: Implications for Restoration Practices. Mining 2022, 2, 315–329. [Google Scholar] [CrossRef]
- Iwegbue, C.M.A.; Isirimah, N.O.; Igwe, C.; Williams, E.S. Characteristic levels of heavy metals in soil profiles of automobile mechanic waste dumps in Nigeria. Environmentalist 2006, 26, 123–128. [Google Scholar] [CrossRef]
- Cabalar, A.F.; Ismael, I.A.; Yavuz, A. Use of zinc coated steel CNC milling waste for road pavement sub grade. Transp. Geotech. 2020, 23, 100342. [Google Scholar] [CrossRef]
- Rybak, J.; Tyulyaeva, Y.; Kongar-Syuryun, C.; Khayrutdinov, A.M.; Akinshin, I. Geomechanical substantiation of parameters of technology for mining salt deposits with a backfill. Min. Sci. 2021, 28, 19–32. [Google Scholar] [CrossRef]
- Lyashenko, V.I.; Golik, V.I.; Klyuev, R.V. Evaluation of the efficiency and environmental impact (on subsoil and groundwater) of underground block leaching (UBL) of metals from ores. Min. Sci. Technol. 2022, 7, 5–17. [Google Scholar] [CrossRef]
- Gurevich, B.I.; Kalinkina, E.V.; Kalinkin, A.M. Binding Properties of Mechanically Activated Nepheline Containing Mining Waste. Minerals 2020, 10, 48. [Google Scholar] [CrossRef] [Green Version]
- Na, H.; Lv, G.; Wang, L.; Liao, L.; Zhang, D.; Guo, L.; Li, W. A new expansion material used for roof-contacted filling based on smelting. Sci. Rep. 2021, 11, 2607. [Google Scholar] [CrossRef] [PubMed]
- Grabinsky, M.; Bawden, W.; Thompson, B. Required Plug Strength for Continuously Poured Cemented Paste Backfill in Longhole Stopes. Mining 2021, 1, 80–99. [Google Scholar] [CrossRef]
- Zhao, Q.; Pang, L.; Wang, D. Adverse Effects of Using Metallurgical Slags as Supplementary Cementitious Materials and Aggregate: A Review. Materials 2022, 15, 3803. [Google Scholar] [CrossRef]
- Saldana, M.; Galvez, E.; Robles, P.; Castillo, J.; Toro, N. Copper Mineral Leaching Mathematical Models—A Review. Materials 2022, 15, 1757. [Google Scholar] [CrossRef]
- Ma, A.; Zheng, X.; Gao, L.; Li, K.; Omran, M.; Chen, G. Enhanced Leaching of Zinc from Zinc-Containing Metallurgical Residues via Microwave Calcium Activation Pretreatment. Metals 2021, 11, 1922. [Google Scholar] [CrossRef]
- Kologrieva, U.; Volkov, A.; Zinoveev, D.; Krasnyanskaya, I.; Stulov, P.; Wainstein, D. Investigation of Vanadium-Containing Sludge Oxidation Roasting Process for Vanadium Ex-traction. Metals 2021, 11, 100. [Google Scholar] [CrossRef]
- Sokolov, A.; Valeev, D.; Kasikov, A. Solvent Extraction of Iron(III) from Al Chloride Solution of Bauxite HCl Leaching by Mixture of Aliphatic Alcohol and Ketone. Metals 2021, 11, 321. [Google Scholar] [CrossRef]
- Zheng, F.; Guo, Y.; Chen, F.; Wang, S.; Zhang, J.; Yang, L.; Qiu, G. Fluoride Leaching of Titanium from Ti-Bearing Electric Furnace Slag in [NH4+]-[F?] Solution. Metals 2021, 11, 1176. [Google Scholar] [CrossRef]
- Fomchenko, N.; Muravyov, M. Sequential Bioleaching of Pyritic Tailings and Ferric Leaching of Nonferrous Slags as a Method for Metal Recovery from Mining and Metallurgical Wastes. Minerals 2020, 10, 1097. [Google Scholar] [CrossRef]
- Whitworth, A.J.; Vaughan, J.; Southam, G.; Van der Ent, A.; Nkrumah, P.N.; Ma, X.; Parbhakar-Fox, A. Review on metal ex-traction technologies suitable for critical metal recovery from mining and processing wastes. Miner. Eng. 2022, 182, 107537. [Google Scholar] [CrossRef]
- Omran, M.; Fabritius, T.; Yu, Y.; Heikkinen, E.-P.; Chen, G.; Kacar, Y. Improving Zinc Recovery from Steelmaking Dust by Switching from Conventional Heating to Microwave Heating. J. Sustain. Metall. 2021, 7, 15–26. [Google Scholar] [CrossRef]
- Zhou, F.; Xiao, Y.; Guo, M.; Tang, Y.; Zhang, W.; Qiu, R. Selective Leaching of Rare Earth Elements from Ion-Adsorption Rare Earth Tailings: A Synergy between CeO2 Reduction and Fe/Mn Stabilization. Environ. Sci. Technol. 2021, 55, 11328–11337. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B.; Xiao, Q.; Lartey, C.; Zhang, Q. The mechanisms of improved chalcopyrite leaching due to mechanical activation. Hydrometallurgy 2017, 173, 149–155. [Google Scholar] [CrossRef]
- Yushkova, O.V.; Yasinskiy, A.S.; Polyakov, P.V.; Yushkov, V.V. Use of mechanical activation to improve the performance of anode cover material. Tsvetnye Met. 2020, 1, 54–59. [Google Scholar] [CrossRef]
- Perez, K.; Villegas, A.; Saldana, M.; Jeldres, R.I.; Gonzalez, J.; Toro, N. Initial investigation into the leaching of manganese from nodules at room temperature with the use of sulfuric acid and the addition of foundry slag—Part II. Sep. Sci. Technol. 2021, 56, 389–394. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Y.; Lv, G.; Liao, L.; Zhang, D. Experimental Studies on Chemical Activation of Cementitious Materials from Smelting Slag of Copper and Nickel Mine. Materials 2019, 12, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.H.; Lu, W.G.; Cao, H.B.; Cai, N.; Zhan, J.; Li, Q.; Kang, F.; Sun, Z. Leaching of valuable metals from nickel sulfide ores by mechanical activation. Chin. J. Process Eng. 2021, 21, 1073. (In Chinese) [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Kim, B.; Lee, J.-C. Effect of Mechanical Activation on the Kinetics of Copper Leaching from Copper Sulfide (CuS). Metals 2018, 8, 150. [Google Scholar] [CrossRef]
- Yushina, T.I.; Krylov, I.O.; Valavin, V.S.; Toan, V.V. Old iron-bearing waste treatment technology. Eurasian Min. 2018, 1, 16–21. [Google Scholar] [CrossRef]
- Palaniandy, S. Impact of mechanochemical effect on chalcopyrite leaching. Int. J. Miner. Process. 2015, 136, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Golik, V.I.; Razorenov, Y.I.; Brigida, V.S.; Burdzieva, O.G. Mechanochemical technology of extraction of metals from enrichment tailings. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2020, 331, 75–183. (In Russian) [Google Scholar] [CrossRef]
- Basturkcu, H.; Achimovicova, M.; Kanuchova, M.; Acarkan, N. Mechanochemical pre-treatment of lateritic nickel ore with sulfur followed by atmospheric leaching. Hydrometallurgy 2018, 181, 43–52. [Google Scholar] [CrossRef]
- Lakshmanan, V.I.; Sridhar, R.; Chen, J.; Halim, M.A. A Mixed-Chloride Atmospheric Leaching Process for the Recovery of Base Metals from Sulphide Materials. Trans. Indian Inst. Met. 2017, 70, 463–470. [Google Scholar] [CrossRef]
- Basturkcua, H.; Acarkan, N.; Gock, E. The role of mechanical activation on atmospheric leaching of a lateritic nickel ore. Int. J. Miner. Process. 2017, 163, 1–8. [Google Scholar] [CrossRef]
- Iakovleva, E.; Belova, M.; Soares, A.; Rassõlkin, A. On the Issues of Spatial Modeling of Nonstandard Profiles by the Example of Electromagnetic Emission Measurement Data. Sustainability 2022, 14, 574. [Google Scholar] [CrossRef]
- Lucay, F.A.; Sales-Cruz, M.; Galvez, E.D.; Cisternas, L.A. Modeling of the Complex Behavior through an Improved Response Surface Methodology. Miner. Process. Extr. Metall. Rev. 2021, 42, 285–311. [Google Scholar] [CrossRef]
- Munganyinka, J.P.; Habinshuti, J.B.; Komadja, G.C.; Uwamungu, P.; Tanvar, H.; Ofori-Sarpong, G.; Mishra, B.; Onwualu, A.P.; Shuey, S. Optimization of Gold Dissolution Parameters in Acidified Thiourea Leaching Solution with Hydrogen Peroxide as an Oxidant: Implications of Roasting Pretreatment Technology. Metals 2022, 12, 1567. [Google Scholar] [CrossRef]
- Dzhioeva, A.K.; Brigida, V.S. Spatial non-linearity of methane release dynamics in underground boreholes for sustainable mining. J. Min. Inst. 2020, 245, 522–530. [Google Scholar] [CrossRef]
- Konigsberger, E.; May, P.; Harris, B. Properties of electrolyte solutions relevant to high concentration chloride leaching I. Mixed aqueous solutions of hydrochloric acid and magnesium chloride. Hydrometallurgy 2008, 90, 177–1913. [Google Scholar] [CrossRef]
- Nowosielska, A.M.; Nikoloski, A.N.; Parsons, D.F. A theoretical and experimental study of the effects of NaCl and the com-petitive chemisorption of ions at the surface sites in the context of galena flotation. Miner. Eng. 2022, 182, 107540. [Google Scholar] [CrossRef]
- Minagawa, M.; Hisatomi, S.; Kato, T.; Granata, G.; Tokoro, C. Enhancement of copper dissolution by mechanochemical activation of copper ores: Correlation between leaching experiments and DEM simulations. Adv. Powder Technol. 2018, 29, 471–478. [Google Scholar] [CrossRef]
- Dubenko, A.V.; Nikolenko, M.V.; Kostyniuk, A.; Likozar, B. Sulfuric Acid Leaching of Altered Ilmenite Using Thermal, Mechanical and Chemical Activation. Minerals 2020, 10, 538. [Google Scholar] [CrossRef]
- Gu, H.; Guo, T.; Wen, H.; Luo, C.; Cui, Y.; Du, S.; Wang, N. Leaching efficiency of sulfuric acid on selective lithium leacha-bility from bauxitic clay stone. Miner. Eng. 2020, 145, 106076. [Google Scholar] [CrossRef]
- Jiang, T.; Meng, F.-Y.; Gao, W.; Zeng, Y.; Su, H.; Li, Q.; Xu, B.; Yang, Y.-B.; Zhong, Q. Leaching behavior of zinc from crude zinc oxide dust in ammonia leaching. J. Cent. South Univ. 2021, 28, 2711–2723. [Google Scholar] [CrossRef]
- Xiao, J.; Zou, K.; Ding, W.; Peng, Y.; Chen, T. Extraction of Lead and Zinc from a Rotary Kiln Oxidizing Roasting Cinder. Metals 2020, 10, 465. [Google Scholar] [CrossRef] [Green Version]
- Perez-Garcia, F.; Rubio-Cintas, M.D.; Parron-Rubio, M.E.; Garcia-Manrique, J.M. Advances in the Analysis of Properties Be-havior of Cement-Based Grouts with High Substitution of Cement with Blast Furnace Slags. Materials 2020, 13, 561. [Google Scholar] [CrossRef]
N | h (H2SO4) | h (NaCl) | V (H2SO4) | V (NaCl) | V (H2O) | h (H2O) | ML | S/L | ML | mL (H2SO4) | mL (NaCl) | MP |
---|---|---|---|---|---|---|---|---|---|---|---|---|
g/L | g/L | mL | mL | mL | g/L | g | g | g | g | g | ||
1 | 2 | 20 | 1.1 | 9.2 | 989.7 | 987.9 | 1009.9 | 1/4 | 200 | 0.40 | 3.96 | 250 |
2 | 10 | 20 | 5.5 | 9.2 | 985.3 | 983.5 | 1013.5 | 1/4 | 200 | 1.97 | 3.95 | 250 |
3 | 2 | 160 | 1.1 | 73.9 | 925.0 | 923.3 | 1085.3 | 1/4 | 200 | 0.37 | 29.48 | 250 |
4 | 10 | 160 | 5.5 | 73.9 | 920.6 | 918.9 | 1088.9 | 1/4 | 200 | 1.84 | 29.39 | 250 |
5 | 2 | 20 | 1.1 | 9.2 | 989.7 | 987.9 | 1009.9 | 1/10 | 500 | 0.99 | 9.90 | 550 |
6 | 10 | 20 | 5.5 | 9.2 | 985.3 | 983.5 | 1013.5 | 1/10 | 500 | 4.93 | 9.87 | 550 |
7 | 2 | 160 | 1.1 | 73.9 | 925.0 | 923.3 | 1085.3 | 1/10 | 500 | 0.92 | 73.71 | 550 |
8 | 10 | 160 | 5.5 | 73.9 | 920.6 | 918.9 | 1088.9 | 1/10 | 500 | 4.59 | 73.47 | 550 |
9 | 6 | 90 | 3.3 | 41.6 | 955.1 | 953.4 | 1049.4 | 1/7 | 350 | 2.00 | 30.02 | 400 |
10 | 6 | 20 | 3.3 | 9.2 | 987.5 | 985.7 | 1011.7 | 1/4 | 200 | 1.19 | 3.95 | 250 |
11 | 6 | 160 | 3.3 | 73.9 | 922.8 | 921.1 | 1087.1 | 1/4 | 200 | 1.10 | 29.44 | 250 |
12 | 6 | 20 | 3.3 | 9.2 | 987.5 | 985.7 | 1011.7 | 1/10 | 500 | 2.97 | 9.88 | 550 |
13 | 6 | 160 | 3.3 | 73.9 | 922.8 | 921.1 | 1087.1 | 1/10 | 500 | 2.76 | 73.59 | 550 |
14 | 2 | 90 | 1.1 | 41.6 | 957.3 | 955.6 | 1047.6 | 1/7 | 350 | 0.67 | 30.07 | 400 |
15 | 10 | 90 | 5.5 | 41.6 | 952.9 | 951.2 | 1051.2 | 1/7 | 350 | 3.33 | 29.97 | 400 |
N | mP (H2SO4) | mP (NaCl) | Experiment | ||
---|---|---|---|---|---|
% | % | (I) | (II) | (III) | |
1 | 0.16 | 1.58 | 45 | 27 | 32 |
2 | 0.79 | 1.58 | 70 | 79 | 61 |
3 | 0.15 | 11.79 | 11 | 11 | 13 |
4 | 0.73 | 11.75 | 28 | 28 | 27 |
5 | 0.18 | 1.80 | 49 | 47 | 42 |
6 | 0.90 | 1.79 | 50 | 55 | 53 |
7 | 0.17 | 13.40 | 16 | 6 | 12 |
8 | 0.83 | 13.36 | 19 | 16 | 65 |
9 | 0.50 | 7.50 | 43 | 32 | 27 |
10 | 0.47 | 1.58 | 87 | 97 | 81 |
11 | 0.44 | 11.77 | 28 | 21 | 7 |
12 | 0.54 | 1.80 | 88 | 99 | 82 |
13 | 0.50 | 13.38 | 27 | 21 | 15 |
14 | 0.17 | 7.52 | 20 | 40 | 31 |
15 | 0.83 | 7.49 | 38 | 38 | 23 |
N | Concrete | Tailings | Slag | Water | Strength Gain Duration, Days | |||||
---|---|---|---|---|---|---|---|---|---|---|
kg | kg | kg | kg | 3 | 7 | 28 | 60 | 90 | 180 | |
1 | 130 | 800 | 450 | 400–450 | 1.8 | 3.9 | 5.5 | 6.8 | 8 | 9.6 |
2 | 115 | 835 | 430 | 400–450 | 1.6 | 3.7 | 5 | 6.4 | 7.5 | 9.2 |
3 | 100 | 860 | 420 | 400–450 | 1.5 | 3.3 | 4.6 | 5.7 | 6.9 | 8.1 |
Pb | Zn | TiO2 | Al2O3 | K2O | Mn | Cu | Ag | S | CaO | Fe2O3 | SiO2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
I | 0.84 | 0.95 | 0.03 | 0.80 | 3.50 | 0.02 | 0.18 | 0.02 | 1.88 | 1.96 | 4.40 | 31.40 |
II | 0.35 | 0.51 | 0.02 | 0.56 | 2.63 | 0.01 | 0.14 | 0.01 | 1.32 | 1.31 | 3.96 | 21.98 |
T, % | Formula | R2 |
---|---|---|
43 | 0.98 | |
44 | 0.97 | |
45 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golik, V.I.; Klyuev, R.V.; Martyushev, N.V.; Brigida, V.; Efremenkov, E.A.; Sorokova, S.N.; Mengxu, Q. Tailings Utilization and Zinc Extraction Based on Mechanochemical Activation. Materials 2023, 16, 726. https://doi.org/10.3390/ma16020726
Golik VI, Klyuev RV, Martyushev NV, Brigida V, Efremenkov EA, Sorokova SN, Mengxu Q. Tailings Utilization and Zinc Extraction Based on Mechanochemical Activation. Materials. 2023; 16(2):726. https://doi.org/10.3390/ma16020726
Chicago/Turabian StyleGolik, Vladimir I., Roman V. Klyuev, Nikita V. Martyushev, Vladimir Brigida, Egor A. Efremenkov, Svetlana N. Sorokova, and Qi Mengxu. 2023. "Tailings Utilization and Zinc Extraction Based on Mechanochemical Activation" Materials 16, no. 2: 726. https://doi.org/10.3390/ma16020726
APA StyleGolik, V. I., Klyuev, R. V., Martyushev, N. V., Brigida, V., Efremenkov, E. A., Sorokova, S. N., & Mengxu, Q. (2023). Tailings Utilization and Zinc Extraction Based on Mechanochemical Activation. Materials, 16(2), 726. https://doi.org/10.3390/ma16020726