The Influence of Different Hematite (α-Fe2O3) Particles on the Thermal, Optical, Mechanical, and Barrier Properties of LDPE/Hematite Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Hematite Particles and LDPE/Hematite Composites
2.2. Characterization
3. Results and Discussion
3.1. Properties of Hematite Particles
3.2. Thermogravimetric Analysis
3.3. FT-IR Spectroscopy
3.4. UV-Vis-NIR Spectroscopy
3.5. Mechanical Properties
3.6. Barrier Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marinović-Cincović, M.; Šaponjić, Z.V.; Djoković, V.; Milonjić, S.K.; Nedeljković, J.M. The influence of hematite nano-crystals on the thermal stability of polystyrene. Polym. Degrad. Stab. 2006, 91, 313–316. [Google Scholar] [CrossRef]
- Djoković, V.; Nedeljković, J.M. Stress relaxation in hematite nanoparticles-polystyrene composites. Macromol. Rapid Commun. 2000, 21, 994–997. [Google Scholar] [CrossRef]
- Kausar, A. Polymeric materials filled with hematite nanoparticle: Current state and prospective application. Polym. Plast. Technol. Mater. 2020, 59, 323–338. [Google Scholar] [CrossRef]
- Palimi, M.J.; Rostami, M.; Mahdavian, M.; Ramezanzadeh, B. A study on the corrosion inhibition properties of silane-modified Fe2O3 nanoparticle on mild steel and its effect on the anticorrosion properties of the polyurethane coating. J. Coat. Technol. Res. 2015, 12, 277–292. [Google Scholar] [CrossRef]
- Chen, D.; Quan, H.; Huang, Z.; Luo, S.; Luo, X.; Deng, F.; Jiang, H.; Zeng, G. Electromagnetic and microwave absorbing properties of RGO@hematite core–shell nanostructure/PVDF composites. Compos. Sci. Technol. 2014, 102, 126–131. [Google Scholar] [CrossRef]
- Bora, M.A.; Adhav, P.B.; Diwate, B.B.; Pawar, D.S.; Dallavalle, S.; Chabukswar, V.V. Room temperature operating sensitive and reproducible ammonia sensor based on PANI/hematite nanocomposite. Polym. Plast. Technol. Mater. 2019, 58, 1545–1555. [Google Scholar] [CrossRef]
- Truffault, L.; Choquenet, B.; Konstantinov, K.; Devers, T.; Couteau, C.; Coiffard, L.J.M. Synthesis of nano-hematite for possible use in sunscreens. J. Nanosci. Nanotechnol. 2011, 11, 2413–2420. [Google Scholar] [CrossRef]
- Camlibel, N.O.; Arik, B.; Avinc, O.; Yavas, A. Antibacterial, UV protection, flame retardancy and coloration properties of cotton fabrics coated with polyacrylate polymer containing various iron ores. J. Text. Inst. 2018, 109, 1424–1433. [Google Scholar] [CrossRef]
- Yurkov, G.Y.; Gubin, S.P.; Pankratov, D.A.; Koksharov, Y.A.; Kozinkin, A.V.; Spichkin, Y.I.; Nedoseikina, T.I.; Pirog, I.V.; Vlasenko, V.G. Iron(III) oxide nanoparticles in a polyethylene matrix. Inorg. Mater. 2002, 38, 137–145. [Google Scholar] [CrossRef]
- Greenstein, K.E.; Myung, N.V.; Parkin, G.F.; Cwiertny, D.M. Performance comparison of hematite (α-Fe2O3)-polymer composite and core-shell nanofibers as point-of-use filtration platforms for metal sequestration. Water Res. 2019, 148, 492–503. [Google Scholar] [CrossRef]
- Matysiak, W.; Tański, T.; Zaborowska, M. Electrospinning process and characterization of PVP/hematite nanofibers. IOP Conf. Ser. Mater. Sci. Eng. 2019, 461, 012050. [Google Scholar] [CrossRef]
- Mensah, E.E.; Abbas, Z.; Azis, R.S.; Ibrahim, N.A.; Khamis, A.M.; Abdalhadi, D.M. Complex permittivity and power loss characteristics of α-Fe2O3/polycaprolactone (PCL) nanocomposites: Effect of recycled α-Fe2O3 nanofiller. Heliyon 2020, 6, 05595. [Google Scholar] [CrossRef]
- Peršić, A.; Popov, N.; Štefanović, E.; Krehula, S.; Govorčin Bajsić, E.; Leskovac, M.; Kratofil Krehula, L. The influence of the size of hematite particles on the properties of polyethylene/hematite composites. In Proceedings of the NANOCON Conference Proceedings—International Conference on Nanomaterials, Brno, Czech Republic, 20–22 October 2021; pp. 154–159. [Google Scholar]
- Chernyshova, I.V.; Ponnurangam, S.; Somasundaran, P. On the origin of an unusual dependence of (bio)chemical reactivity of ferric hydroxides on nanoparticle size. Phys. Chem. Chem. Phys. 2010, 12, 14045–14056. [Google Scholar] [CrossRef]
- Townsend, T.K.; Sabio, E.M.; Browning, N.D.; Osterloh, F.E. Photocatalytic water oxidation with suspended alpha-Fe2O3 particles—Effects of nanoscaling. Energy Environ. Sci. 2011, 4, 4270–4275. [Google Scholar] [CrossRef]
- Demarchis, L.; Sordello, F.; Minella, M.; Minero, C. Tailored properties of hematite particles with different size and shape. Dyes Pigm. 2015, 115, 204–210. [Google Scholar] [CrossRef]
- Luo, X.; Song, S.; Ma, M.; Wang, Y.; Zhou, Y.; Zhang, Y. Effect of particle size on flotation performance of hematite. Physicochem. Probl. Miner. Process. 2019, 55, 479–493. [Google Scholar]
- Meijer, J.M.; Rossi, L. Preparation, properties, and applications of magnetic hematite microparticles. Soft Matter 2021, 17, 2354–2368. [Google Scholar] [CrossRef]
- Sugimoto, T.; Sakata, K. Preparation of monodisperse pseudocubic α-Fe2O3 particles from condensed ferric hydroxide gel. J. Colloid Interface Sci. 1992, 152, 587–590. [Google Scholar] [CrossRef]
- Sugimoto, T.; Wang, Y.; Itoh, H.; Muramatsu, A. Systematic control of size, shape and internal structure of monodisperse α-Fe2O3 particles. Colloids Surf. A Physicochem. Eng. Asp. 1998, 134, 265–279. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Kuljanin, J.; Marinović-Cincović, M.; Zec, S.; Čomor, M.I.; Nedeljković, J.M. Influence of Fe2O3-filler on the thermal properties of polystyrene. J. Mater. Sci. Lett. 2003, 22, 235–237. [Google Scholar] [CrossRef]
- Gulmine, J.V.; Janissek, J.V.; Heise, H.M.; Akcelrud, L. Polyethylene characterization by FTIR. Polym. Test. 2002, 21, 557–563. [Google Scholar] [CrossRef]
- Smith, B.C. Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Chao, Y.; Jianming, Z.; Deyan, S.; Shouke, Y. Structure characterization of melt drawn polyethylene ultrathin films. Chin. Sci. Bull. 2006, 51, 2844–2850. [Google Scholar]
- Wang, Y.; Muramatsu, A.; Sugimoto, T. FTIR analysis of well-defined α-Fe2O3 particles. Colloids Surf. A Physicochem. Eng. Asp. 1998, 134, 281–297. [Google Scholar] [CrossRef]
- Scott, G. Mechanisms of Polymer Degradation and Stabilisation; Elsevier Science Publishers Ltd.: Essex, UK, 1990. [Google Scholar]
- Andrady, A.L. Plastics and the Environment; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Cheremisinoff, N.P. Handbook of Engineering Polymeric Materials; Marcel Dekker Inc.: New York, NY, USA, 1997. [Google Scholar]
- Gencel, O.; Brostow, W.; Martinez-Barrera, G.; Gok, M.S. Mechanical Properties of Polymer Concretes Containing Different Amount of Hematite or Colemanite. Polimery 2012, 57, 276–283. [Google Scholar]
- Johansson, F.; Leufvén, A. Food Packaging Polymer as Barrier against Aroma Vapour and Oxygen in Fat or Humid Environments. In Food and Packaging Materials: Chemical Interactions; Ackermann, P., Tagerstand, M., Ohesson, T., Eds.; The Royal Society of Chemistry: Cambridge, UK, 1995. [Google Scholar]
- Kausar, A. A review of high performance polymer nanocomposites for packaging applications in electronics and food industries. J. Plast. Film Sheeting 2020, 36, 94–112. [Google Scholar] [CrossRef]
- Hrnjak Murgić, Z.; Rešček, A.; Ptiček Siročić, A.; Kratofil Krehula, L.; Katančić, Z. Nanoparticles in Active Polymer Food Packaging; Smithers Pira Technology Ltd.: Shawbury, UK, 2015. [Google Scholar]
Sample | LDPE (wt%) | Hematite (wt%) |
---|---|---|
LDPE | 100 | 0.00 |
LDPE/0.25%HC2 | 99.75 | 0.25 |
LDPE/0.5%HC2 | 99.50 | 0.50 |
LDPE/1%HC2 | 99.00 | 1.00 |
LDPE/0.25%HE1 | 99.75 | 0.25 |
LDPE/0.5%HE1 | 99.50 | 0.50 |
LDPE/1%HE1 | 99.00 | 1.00 |
LDPE/0.25%HS1 | 99.75 | 0.25 |
LDPE/0.5%HS1 | 99.50 | 0.50 |
LDPE/1%HS1 | 99.00 | 1.00 |
Sample | T95% (°C) | Tmax (°C) |
---|---|---|
LDPE | 422.60 | 467.07 |
LDPE/0.25%HC2 | 442.92 | 488.37 |
LDPE/0.5%HC2 | 442.68 | 487.87 |
LDPE/1%HC2 | 439.32 | 484.29 |
LDPE/0.25%HE1 | 437.87 | 482.60 |
LDPE/0.5%HE1 | 435.71 | 481.87 |
LDPE/1%HE1 | 434.99 | 483.32 |
LDPE/0.25%HS1 | 436.94 | 482.14 |
LDPE/0.5%HS1 | 438.38 | 483.57 |
LDPE/1%HS1 | 436.23 | 479.27 |
Sample | Water Loss after 24 h/g | Total Water Loss (after 48 h)/g |
---|---|---|
LDPE | 0.275 | 0.299 |
LDPE/0.25%HC2 | 0.014 | 0.018 |
LDPE/0.5%HC2 | 0.012 | 0.014 |
LDPE/1%HC2 | 0.009 | 0.011 |
LDPE/0.25%HE1 | 0.015 | 0.019 |
LDPE/0.5%HE1 | 0.012 | 0.017 |
LDPE/1%HE1 | 0.010 | 0.014 |
LDPE/0.25%HS1 | 0.015 | 0.021 |
LDPE/0.5%HS1 | 0.020 | 0.031 |
LDPE/1%HS1 | 0.024 | 0.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peršić, A.; Popov, N.; Kratofil Krehula, L.; Krehula, S. The Influence of Different Hematite (α-Fe2O3) Particles on the Thermal, Optical, Mechanical, and Barrier Properties of LDPE/Hematite Composites. Materials 2023, 16, 706. https://doi.org/10.3390/ma16020706
Peršić A, Popov N, Kratofil Krehula L, Krehula S. The Influence of Different Hematite (α-Fe2O3) Particles on the Thermal, Optical, Mechanical, and Barrier Properties of LDPE/Hematite Composites. Materials. 2023; 16(2):706. https://doi.org/10.3390/ma16020706
Chicago/Turabian StylePeršić, Ana, Nina Popov, Ljerka Kratofil Krehula, and Stjepko Krehula. 2023. "The Influence of Different Hematite (α-Fe2O3) Particles on the Thermal, Optical, Mechanical, and Barrier Properties of LDPE/Hematite Composites" Materials 16, no. 2: 706. https://doi.org/10.3390/ma16020706