Numerical Simulation of Fatigue Cracking of Diaphragm Notch in Orthotropic Steel Deck Model
Abstract
:1. Introduction
2. The Extended Finite Element Method
- (1)
- Unit decomposition of extended finite element
- (2)
- Crack and level-set method
- (3)
- Enrichment function
3. Three-Dimensional Discontinuous Extended Finite Element Model
3.1. Meshing
3.2. Numerical-Simulation Method of Crack Propagation
3.3. Level-Set Method to Describe Geometric Discontinuity
3.4. Initial Crack Length
3.5. Crack-Initiation Criterion and Propagation Direction
3.6. Material Properties
4. Extended Finite Element Model of OSD from Experimental Model
5. Fatigue Cracking Analysis of OSD Using XFEM
5.1. Cause-Analysis of Fatigue Crack at the Joint-of-Arc Opening, U-Rib, and Diaphragm
5.2. Fracture-Mechanics Analysis of Crack Propagation
5.3. Fatigue Analysis of the Cross Joint of the Roof Plate, Diaphragm, and U-Rib
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Bu, Y.; Li, Q. Research progress on fatigue of orthotropic steel bridge deck. Chin. J. Highw. 2017, 30, 14–30. [Google Scholar]
- Meng, F.; Zhang, Q.; Su, Q. Key Anti Fatigue Technology of Orthotropic Steel Bridge Deck; People’s Communications Press: Beijing, China, 2014. [Google Scholar]
- Tsakopoulos, P.A.; Fisher, J.W. Full-scale Fatigue Tests of Steel Orthotropic Decks for the Williamsburg Bridget. J. Bridge Eng. 2003, 8, 323–333. [Google Scholar] [CrossRef]
- Wang, D.; Xiang, C.; Ma, Y.; Chen, A.; Wang, B. Experimental study on the root-deck fatigue crack on orthotropic steel decks. Mater. Des. 2021, 203, 109601. [Google Scholar] [CrossRef]
- Di, J.; Ruan, X.; Zhou, X.; Wang, J.; Peng, X. Fatigue assessment of orthotropic steel bridge decks based on train monitoring data. Eng. Struct. 2021, 228, 111437. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, F.; Wang, D.; Lu, N. Fatigue crack growth behavior of rib-to-deck double-sided welded joints of orthotropic steel decks. Adv. Struct. Eng. 2021, 24, 556–569. [Google Scholar] [CrossRef]
- Wang, C.S.; Fu, B.N.; Zhang, Q. Full scale fatigue test of orthotropic steel bridge deck. Chin. J. Highw. 2013, 26, 67–76. [Google Scholar]
- Zhang, Q.H.; Cui, C.; Bu, Y.Z.; Liu, Y.M.; Ye, H.W. Fatigue tests and fatigue assessment approaches for rib-to-diaphragm in steel orthotropic decks. J. Constr. Steel Res. 2015, 114, 110–118. [Google Scholar] [CrossRef]
- Kumar, P.; Pathak, H.; Singh, A. Fatigue crack growth behavior of thermomechanically machined AA 5754: Experimental and extended finite element simulation. Adv. Mater. Struct. Mech. 2021, 28, 88–101. [Google Scholar] [CrossRef]
- Mohammadi, S. Extened Finite Element Method for Fracture Analysis of Structures; Blackwell Publishing Ltd.: Carlton, Australia, 2008. [Google Scholar]
- Terada, K.; Asai, M.; Yamagishi, M. Finite cover method for linear and nonlinear analyses of heterogeneous solids. Int. J. Numer. Methods Eng. 2003, 8, 1321–1346. [Google Scholar] [CrossRef]
- Karmakov, S.; Cepero-Mejías, F.; Curiel-Sosa, J.L. Numerical analysis of the delamination in CFRP laminates: VCCT and XFEM assessment. Compos. Part C Open Access 2020, 2, 100014. [Google Scholar] [CrossRef]
- Barenblatt, G.I.; Botvina, L.R. Self-Oscillatory Modes of Fatigue Fracture and the Formation of Self-Similar Structures at the Fracture Surface. Proc. R. Soc. Math. Phys. Sci. (1990–1995) 1993, 442, 489–494. [Google Scholar]
- El Haddad, M.H.; Topper, T.H.; Smith, K.N. Prediction of nonpropagating cracks. Eng. Fract. Mech. 1979, 11, 573–584. [Google Scholar] [CrossRef]
- Hobbacher, A. Recommendation for fatigue design of welded joints and components. In International Institute of Welding Collection; XIII-2151r1-07/XV-1254r1-07; International Institute of Welding: Berlin, Germany, 2007. [Google Scholar]
- Liu, Y.; Chen, C.; Li, J.; Li, G. Study on fatigue crack growth behavior of 14MnNbq welded bridge steel. Eng. Mech. 2008, 25, 209–213. [Google Scholar]
- Li, C.; Li, Y.; Chen, Z.; Ke, L. Research on fatigue cracking causes and reinforcement details of steel box girder diaphragm. Chin. J. Highw. 2017, 30, 121–131. [Google Scholar]
- Wang, C.; Zhai, M.; Tang, Y.; Chen, W.; Qu, T. Numerical fracture mechanics simulation of fatigue crack coupling propagation mechanism of steel bridge deck. Chin. J. Highw. 2017, 30, 82–95. [Google Scholar]
- Zeng, Y.; Qu, Y.; Tan, Y.; Jiang, Y.; Gu, A. Analysis of fatigue cracking of orthotropic steel decks using XFEM. Eng. Fail. Anal. 2022, 140, 106536. [Google Scholar]
- Zeng, Y.; Qu, Y.; Tan, H.; Gu, A. Fatigue test research on main cable suspender steel box girder integrated model of long span suspension bridge. J. Sichuan Univ. (Eng. Sci. Ed.) 2016, 48, 78–84. [Google Scholar]
- Zeng, Y.; Qu, Y.; Gu, A.; Tan, H.; Liu, G. Fatigue performance test of large segment orthotropic steel deck of steel box girder suspension bridge. J. Harbin Inst. Technol. 2016, 48, 95–100. [Google Scholar]
- Qu, Y.; Gu, A.; Zeng, Y.; Du, B. Fatigue crack test and numerical analysis of orthotropic steel bridge deck. Bridge Constr. 2017, 47, 65–70. [Google Scholar]
- Zhao, X.; Liu, X.; Pan, Y.; Zhang, Y. Fatigue test research on connection structure between longitudinal rib web and deck of orthotropic steel bridge deck. China Railw. Sci. 2013, 26, 41–45. [Google Scholar]
- Liu, Y.; Zhang, Q.; Zhang, P.; Cui, C.; Bu, Y. Fatigue life of U-rib butt weld of orthotropic steel deck of Hong Kong Zhuhai Macao Bridge. Chin. J. Highw. 2016, 29, 25–33. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; He, H.; Qu, Y.; Sun, X.; Tan, H.; Zhou, J. Numerical Simulation of Fatigue Cracking of Diaphragm Notch in Orthotropic Steel Deck Model. Materials 2023, 16, 467. https://doi.org/10.3390/ma16020467
Zeng Y, He H, Qu Y, Sun X, Tan H, Zhou J. Numerical Simulation of Fatigue Cracking of Diaphragm Notch in Orthotropic Steel Deck Model. Materials. 2023; 16(2):467. https://doi.org/10.3390/ma16020467
Chicago/Turabian StyleZeng, Yong, Hongwei He, Yu Qu, Xudong Sun, Hongmei Tan, and Jianting Zhou. 2023. "Numerical Simulation of Fatigue Cracking of Diaphragm Notch in Orthotropic Steel Deck Model" Materials 16, no. 2: 467. https://doi.org/10.3390/ma16020467
APA StyleZeng, Y., He, H., Qu, Y., Sun, X., Tan, H., & Zhou, J. (2023). Numerical Simulation of Fatigue Cracking of Diaphragm Notch in Orthotropic Steel Deck Model. Materials, 16(2), 467. https://doi.org/10.3390/ma16020467