Advanced Self-Healing Ceramics with Controlled Degradation and Repair by Chemical Reaction
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- (1)
- At pH 9.4, the low concentration of the chemical components prevents reactions and the transition from the inflammation stage to the repair stage does not occur easily, causing repair to fail.
- (2)
- At pH 12.4, the concentration of chemical components is high enough to allow the transition from the inflammation stage to the repair stage, and the transition from the repair stage to the modification stage to allow recovery of strength.
- (3)
- In the ammonium solution at pH 11.4, the reaction proceeded despite the low Ca2+ concentration, but strength recovery was slight. This may be because the crystals coarsened during the repair and modification stages and the precipitation reaction did not effectively work as a healing function.
- (4)
- Comparison of the experimental results with the thermodynamic calculations indicates that the healing ability is not determined by equilibrium theory alone, but that kinetics including degradation and repair must be considered.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoshioka, S.; Boatemaa, L.; Zwaag, S.V.D.; Nakao, W.; Sloof, W.G. On the use of TiC as high-temperature healing particles in alumina based composites. J. Eur. Ceram. Soc. 2016, 36, 4155–4162. [Google Scholar] [CrossRef]
- Houjou, K.; Ando, K.; Liu, S.-P.; Sato, S. Crack-healing and oxidation behavior of silicon nitride ceramics. J. Eur. Ceram. Soc. 2004, 24, 2329–2338. [Google Scholar] [CrossRef]
- Ando, K.; Chu, M.-C.; Tsuji, K.; Hirasawa, T.; Kobayashi, Y.; Sato, S. Crack healing behaviour and high-temperature strength of mullite/SiC composite ceramics. J. Eur. Ceram. Soc. 2002, 22, 1313–1319. [Google Scholar] [CrossRef]
- Nakao, W.; Abe, S. Enhancement of the self-healing ability in oxidation induced self-healing ceramic by modifying the healing agent. Smart Mater. Struct. 2012, 21, 025002. [Google Scholar] [CrossRef]
- Nguyen, S.T.; Ayahisa, O.; Hirokazu, I.; Tadachika, N.; Hideki, H.; Tohru, S.; Hisayuki, S.; Koichi, N. Titanium Nitride and Yttrium Titanate Nanocomposites, Endowed with Renewable Self-Healing Ability. Adv. Mater. Interfaces 2021, 8, 2100979. [Google Scholar] [CrossRef]
- Nguyen, S.T.; Tsuyoshi, T.; Ayahisa, O.; Hisayuki, S.; Koichi, N.; Tadachika, N. Improving Self-Healing Ability and Flexural Strength of Ytterbium Silicate-Based Nanocomposites with Silicon Carbide Nanoparticulates and Whiskers. J. Ceram. Soc. Jpn. 2019, 129, 209–216. [Google Scholar] [CrossRef]
- Osada, T.; Kamoda, K.; Mitome, M.; Hara, T.; Abe, T.; Tamagawa, Y.; Nakao, W.; Ohmura, T. A Novel Design Approach for Self-Crack-Healing Structural Ceramics with 3D Networks of Healing Activator. Sci. Rep. 2017, 7, 17853. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Fu, Q.; Zhou, L.; Liu, B.; Cheng, C.; Li, X.; Sun, J. Self-Healing Improvement Strategy of Thermally Sprayed MoSi2 Coating at 1773 K: From Calculation to Experiment. Corros. Sci. 2021, 189, 109599. [Google Scholar] [CrossRef]
- Monteverde, F.; Saraga, F.; Reimer, T.; Sciti, D. Thermally Stimulated Self-Healing Capabilities of Zrb2-Sic Ceramics. J. Eur. Ceram. Soc. 2021, 41, 7423–7433. [Google Scholar] [CrossRef]
- Smeacetto, F.; Fabiana, D.; Valentina, C.; Peter, T.; Milena, S. Ytterbium Disilicate-Based Glass-Ceramic as Joining Material for Ceramic Matrix Composites. J. Eur. Ceram. Soc. 2021, 41, 1099–1106. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, Z. Microstructure and Self-Healing Mechanism of B4c–Tib2–Sic Composite Ceramic after Pre-Oxidation Behaviour. Ceram. Int. 2022, 48, 25458–25464. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, L.; Wang, J.; Hu, Q.; Zhang, H.; Zhang, S.; Zhou, X. Crack-Healing Behaviour of MoSi2 Dispersed Yb2Si2O7 Environmental Barrier Coatings. Ceram. Int. 2022, 48, 29919–29928. [Google Scholar] [CrossRef]
- Cai, H.; Wei, Y.; Wang, B.; Jiang, K. Oxidation Induced Crack-Healing Behavior of Sic-Al2O3-Tib2 Composites at 600–800 °C. Int. J. Appl. Ceram. Technol. 2023. [Google Scholar] [CrossRef]
- Cui, X.; Huang, C.; Shi, Z.; Liu, H.; Li, S.; Han, Y.; Ji, L.; Wang, Z.; Xu, L.; Huang, S. The Crack-Healing and Strength Recovery Mechanisms for the New Developed Ti (C, N)-TiSi2-Wc Composite Ceramic Tool Materials with Crack-Healing Ability. Ceram. Int. 2023. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Huang, C.; Ji, L.; Wang, L.; Yuan, Y.; Liu, Q.; Han, Q. Study on Crack Healing Performance of Al2O3/Sicw/TiSi2 New Ceramic Tool Material. Ceram. Int. 2023, 49, 13790–13798. [Google Scholar] [CrossRef]
- Maruoka, D.; Itaya, T.; Misaki, T.; Nanko, M. Recovery of mechanical property on nano-Co particles dispersed Al2O3 via high-temperature oxidation. Mater. Trans. 2012, 53, 1816–1821. [Google Scholar] [CrossRef]
- Maruoka, D.; MurakaMi, T.; Kasai, E. Influence of heat treatment temperature on self-healing effect of fe particle/Mullite ceramic composites. Tetsu-Hagane/J. Iron Steel Inst. Jpn. 2020, 106, 844–850. [Google Scholar] [CrossRef]
- Pham, H.V.; Nanko, M.; Nakao, W. High-temperature Bending Strength of Self-Healing Ni/Al2O3 Nanocomposites. Int. J. Appl. Ceram. Technol. 2016, 13, 973–983. [Google Scholar] [CrossRef]
- Farle, A.-S.; Kwakernaak, C.; van der Zwaag, S.; Sloof, W.G. A conceptual study into the potential of Mn+ 1AXn-phase ceramics for self-healing of crack damage. J. Eur. Ceram. Soc. 2015, 35, 37–45. [Google Scholar] [CrossRef]
- Yang, H.; Pei, Y.; Rao, J.; De Hosson, J.T.M. Self-healing performance of Ti 2 AlC ceramic. J. Mater. Chem. 2012, 22, 8304–8313. [Google Scholar] [CrossRef]
- Yang, H.; Pei, Y.; De Hosson, J.T.M. Oxide-scale growth on Cr2AlC ceramic and its consequence for self-healing. Scr. Mater. 2013, 69, 203–206. [Google Scholar] [CrossRef]
- Bei, G.P.; Pedimonte, B.J.; Pezoldt, M.; Ast, J.; Fey, T.; Goeken, M.; Greil, P. Crack healing in Ti2Al0.5Sn0.5C–Al2O3 composites. J. Am. Ceram. Soc. 2015, 98, 1604–1610. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, R.; Zhang, X.; Zhao, L.; Han, W. Oxidation-induced crack healing in Zr2Al4C5 ceramic. Mater. Des. 2009, 30, 3602–3607. [Google Scholar] [CrossRef]
- Wang, B.; Tu, R.; Wei, Y.; Cai, H. Self-Healing of SiC-Al2O3-B4C Ceramic Composites at Low Temperatures. Materials 2022, 15, 652. [Google Scholar] [CrossRef]
- Shi, S.; Goto, T.; Cho, S.; Sekino, T. Electrochemically assisted room-temperature crack healing of ceramic-based composites. J. Am. Ceram. Soc. 2019, 102, 4236–4246. [Google Scholar] [CrossRef]
- Ahn, T.H.; Kishi, T. Crack Self-healing Behavior of Cementitious Composites Incorporating Various Mineral Admixtures. J. Adv. Concr. Technol. 2010, 8, 171–186. [Google Scholar] [CrossRef]
- Jonkers, H.M. Self Healing Concrete: A Biological Approach. Springer Ser. Mater. Sci. 2007, 100, 195–204. [Google Scholar]
- Hosoda, A.; Higuchi, T.; Eguchi, M.; Yoshida, H.; Aoki, H.; Ahn, T.-H.; Kishi, T.; Nishiwaki, T.; Mihashi, H.; Kikuta, T.; et al. Self Healing of Longitudinal Cracks in Utility Concrete Pole. J. Adv. Concr. Technol. 2012, 10, 278–284. [Google Scholar] [CrossRef]
- Hossain, M.R.; Sultana, R.; Patwary, M.M.; Khunga, N.; Sharma, P.; Shaker, S.J. Self-healing concrete for sustainable buildings. A review. Environ. Chem. Lett. 2022, 20, 1265–1273. [Google Scholar] [CrossRef]
- Antonovič, V.; Keriene, J.; Boris, R.; Aleknevičius, M. The effect of temperature on the formation of the hydrated calcium aluminate cement structure. Procedia Eng. 2013, 57, 99–106. [Google Scholar] [CrossRef]
- Mostafa, N.Y.; Zaki, Z.; Abd Elkader, O.H. Chemical activation of calcium aluminate cement composites cured at elevated temperature. Cem. Concr. Compos. 2012, 34, 1187–1193. [Google Scholar] [CrossRef]
- Lothenbach, B.; Kulik, D.A.; Matschei, T.; Balonis, M.; Baquerizo, L.; Dilnesa, B.; Miron, G.D.; Myers, R.J. Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem. Concr. Res. 2019, 115, 472–506. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | TiO2 | |
---|---|---|---|---|---|---|---|---|
Matrix | 63.5 | 23.4 | 0.9 | 0.6 | 0.3 | 3.4 | 1.3 | 0.4 |
Cement | 0.1 | 79.9 | <0.1 | 18.6 | 0.1 | - | - | <0.1 |
Condition No. | pH | Temp. [°C] | Healing Time [h] | Drying Time [h] | Humidity [%] |
---|---|---|---|---|---|
1 | 9.4 (Ca(OH)2) | 25 | 12 | 72 | 0 |
2 | 12.4 (Ca(OH)2) | ||||
3 | 11.4 (NH3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekine, N.; Nakao, W. Advanced Self-Healing Ceramics with Controlled Degradation and Repair by Chemical Reaction. Materials 2023, 16, 6368. https://doi.org/10.3390/ma16196368
Sekine N, Nakao W. Advanced Self-Healing Ceramics with Controlled Degradation and Repair by Chemical Reaction. Materials. 2023; 16(19):6368. https://doi.org/10.3390/ma16196368
Chicago/Turabian StyleSekine, Nobuhide, and Wataru Nakao. 2023. "Advanced Self-Healing Ceramics with Controlled Degradation and Repair by Chemical Reaction" Materials 16, no. 19: 6368. https://doi.org/10.3390/ma16196368
APA StyleSekine, N., & Nakao, W. (2023). Advanced Self-Healing Ceramics with Controlled Degradation and Repair by Chemical Reaction. Materials, 16(19), 6368. https://doi.org/10.3390/ma16196368