Effect of Coffee and Polishing Systems on the Color Change of a Conventional Resin Composite Repaired by Universal Resin Composites: An In Vitro Study
Abstract
:1. Introduction
- I.
- After the repair procedure, the polishing systems with different abrasives would cause different results on resin composites;
- II.
- Coffee would affect the color change of repaired restorations;
- III.
- After the staining process with coffee, novel polishing systems would have an impact on the color change of universal resin composites.
2. Materials and Methods
2.1. Preparation of Specimens
2.2. Specimen Repair
2.3. Specimen Polishing
2.4. Staining Procedure
2.5. Color Assesment
2.6. Statistical Analysis
3. Results
3.1. Color Stability
3.2. The Effect of Repolishing
3.3. Comparison of Color Correspondence among Resin Composite Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nahsan, F.P.S.; Mondellı, R.F.L.; Franco, E.B.; Naufel, F.S.; Ueda, J.K.; Schmıtt, V.L.; Baseggıo, W. Clinical strategies for esthetic excellence in anterior tooth restorations: Understanding color and resin composite selection. J. Appl. Oral Sci. 2012, 20, 151–156. [Google Scholar] [CrossRef]
- Staxrud, F.; Dahl, J. Silanising agents promote resin-composite repair. Int. Dent. J. 2015, 65, 311–315. [Google Scholar] [CrossRef] [PubMed]
- de Abreu, J.L.B.; Sampaio, C.S.; Benalcázar Jalkh, E.B.; Hirata, R. Analysis of the color matching of universal resin composites in anterior restorations. J. Esthet. Restor. Dent. 2021, 33, 269–276. [Google Scholar] [PubMed]
- Alzraikat, H.; Burrow, M.F.; Maghaireh, G.A.; Taha, N. Nanofilled resin composite properties and clinical performance: A review. Oper. Dent. 2018, 43, E173–E190. [Google Scholar] [PubMed]
- Beun, S.; Glorieux, T.; Devaux, J.; Vreven, J.; Leloup, G. Characterization of nanofilled compared to universal and microfilled composites. Dent. Mater. 2007, 23, 51–59. [Google Scholar] [CrossRef]
- Mada, D.C.; Gasparik, C.; Irimie, A.I.; Mada, M.D.; Dudea, D.; Campıan, R.S. Evaluation of chromatic changes of a nanoresin composite using the new whitness index. Clujul. Med. 2018, 91, 222–228. [Google Scholar]
- Blum, I.R.; Lynch, C.D.; Wilson, N.H.F. Factors influencing the repair of dental restorations with resin composite. Clin. Cosmet. Investig. Dent. 2014, 6, 81–87. [Google Scholar] [CrossRef]
- Maneenut, C.; Sakoolnamarka, R.; Tyas, M.J. Repair potential of resin composite materials. Dent. Mater. 2011, 27, e20–e27. [Google Scholar]
- Arbutina, A.; Arapović-Savić, M.; Umićević-Davidović, M.; Mirjanić, V.; Radman, I.K.; Mirjanić, Đ. Evaluation of the enamel surface using EDI and ESRS index after removal of the fixed orthodontic appliance. Contemp. Mater. 2021, 13. [Google Scholar] [CrossRef]
- Perez, M.M.; Hita-Iglesias, C.; Ghinea, R.; Yebra, A.; Pecho, O.E.; Ionescu, A.M.; Crespo, A.; Hita, E. Optical properties of supra-Nano spherical filled resin composites compared to nanofilled, nano-hybrid, and micro-hybrid composites. Dent. Mater. J. 2016, 35, 353–359. [Google Scholar]
- Alshehri, A.; Alhalabi, F.; Mustafa, M.; Awad, M.M.; Alqhtani, M.; Almutairi, M.; Alhijab, F.; Jurado, C.A.; Fischer, N.G.; Nurrohman, H.; et al. Effects of accelerated aging on color stability and surface roughness of a biomimetic composite: An in vitro study. Biomimetics 2022, 7, 158. [Google Scholar] [CrossRef] [PubMed]
- Iyer, R.S.; Babani, V.R.; Yaman, P.; Dennison, J. Color match using instrumental and visual methods for single, group, and multi-shade composite resins. J. Esthet. Restor. Dent. 2021, 33, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Guo, Y.; Xu, C. Color effect of light sources on idot based on CIE1976 L*a*b* color system and round RGB diagram system. Color Res. Appl. 2019, 44, 932–940. [Google Scholar] [CrossRef]
- Ertas, E.; Gueler, A.U.; Yuecel, A.C.; Köprülü, H.; Güler, E. Color stability of resin composites after immersion in different drinks. Dent. Mater. J. 2006, 25, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Marghalani, H.Y. Effect of finishing/polishing systems on the surface roughness of novel posterior composites. J. Esthet. Restor. Dent. 2010, 22, 127–138. [Google Scholar] [CrossRef]
- St-Pierre, L.; Martel, C.; Crépeau, H.; Vargas, M. Influence of polishing systems on surface roughness of resin composites: Polishability of resin composites. Oper. Dent. 2019, 44, E122–E132. [Google Scholar] [CrossRef]
- Aytac, F.; Karaarslan, E.S.; Agaccioglu, M.; Tastan, E.; Buldur, M.; Kuyucu, E. Effects of novel finishing polishing systems on surface roughness morphology of nanocomposites. J. Esthet. Restor. Dent. 2016, 28, 247–261. [Google Scholar] [CrossRef]
- Amaya-Pajares, S.P.; Koi, K.; Watanabe, H.; da Costa, J.B.; Ferracane, J.L. Development maintenance of surface loss of dental composites after polishing brushing: Review of the literature. J. Esthet. Restor. Dent. 2022, 34, 15–41. [Google Scholar] [CrossRef]
- Ranka, S.; Rao, A.S.; Shah, U.; Solanki, D.; Pawar, A.M.; Reda, R.; Zanza, A.; Testarelli, L. Comparative Evaluation of Two Different Fiber-Reinforced Composite Materials in Class 1 Post-Endodontic Restorations in Molars—A Randomized Clinical Study. Materials 2022, 15, 7858. [Google Scholar] [CrossRef]
- Ikeda, T.; Murata, Y.; Sano, H. Translucency of opaque-shade resin composites. Am. J. Dent. 2004, 17, 127–130. [Google Scholar]
- Kim, S.J.; Son, H.H.; Cho, B.H.; Lee, I.B.; Um, C.M. Translucency masking ability of various opaque-shade resin composites. J. Dent. 2009, 37, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Paravina, R.D.; Ghinea, R.; Herrera, L.J.; Bona, A.D.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; Perez, M.D.M. Color difference thresholds in dentistry. J. Esthet. Restor. Dent. 2015, 27 (Suppl. S1), S1–S9. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.J.; Peter, A.; Rodoni, L.; Pietrobon, N. Conventional visual vs spectrophotometric shade taking for porcelain-fused-to-metal crowns: A clinical comparison. J. Prosthet. Dent. 2004, 92, 577. [Google Scholar] [CrossRef]
- da Silva, J.D.; Park, S.E.; Weber, H.P.; Ishikawa-Nagai, S. Clinical Implications Clinical performance of a newly developed spectrophotometric system on tooth color reproduction “Anterior Esthetic Restorations Fabricated Using a Spectrophotometer. Dentistry 2008, 4, 361–368. [Google Scholar]
- Khashayar, G.; Dozic, A.; Kleverlaan, C.J.; Feilzer, A. Data comparison between two dental spectrophotometers. Oper. Dent. 2012, 37, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Mahn, E.; Tortora, S.C.; Olate, B.; Cacciuttolo, F.; Kernitsky, J.; Jorquera, G. Comparison of visual analog shade matching, a digital visual method with a cross-polarized light filter, and a spectrophotometer for dental color matching. J. Prosthet. Dent. 2021, 125, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Monjarás-Ávila, A.J.; Zarow, M.; Jakubowicz, N.; Jorquera, G.; Ashi, T.; Mancino, D.; et al. Novel trends in dental color match using different shade selection methods: A systematic review and meta-analysis. Materials 2022, 15, 468. [Google Scholar] [CrossRef]
- Gómez-Polo, C.; Portillo Muñoz, M.P.; Lorenzo Luengo, M.C.; Vicente, P.; Galindo, P.; Casado, A.M.M. Comparison of the CIELab CIEDE2000 color difference formulas. J. Prosthet. Dent. 2016, 115, 65–70. [Google Scholar] [CrossRef]
- Sharma, G.; Wu, W.; Dalal, E.N. The CIEDE2000 color difference formula includes implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 2005, 30, 21–30. [Google Scholar] [CrossRef]
- Melgosa, M. Testing CIELAB-based color-difference formulas. Color Res. Appl. 2000, 25, 49–55. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Jouhar, R.; Khurshid, Z. Smart monochromatic composite: A literature review. Int. J. Dent. 2022, 2022, 2445394. [Google Scholar] [CrossRef]
- Alhamdan, E.M.; Bashiri, A.; Alnashmi, F.; Al-Saleh, S.; Al-shahrani, K.; Al-shahrani, S.; Alsharani, A.; Alzahrani, K.M.; Alqarawi, F.K.; Vohra, F.; et al. Evaluation of smart chromatic technology for a single-shade dental polymer resin: An in vitro study. Appl. Sci. 2021, 11, 10108. [Google Scholar] [CrossRef]
- Durand, L.B.; Ruiz-López, J.; Perez, B.G.; Ionescu, A.M.; Carrillo-Pérez, F.; Ghinea, R.; Perez, M.M. Color lightness chroma hue translucency adjustment potential of resin composites using CIEDE2000 color difference formula. J. Esthet. Restor. Dent. 2021, 33, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Gönülol, N.; Yilmaz, F. The effects of finishing and polishing techniques on surface roughness and color stability of nanocomposites. J. Dent. 2012, 40 (Suppl. 2), e64–e70. [Google Scholar] [CrossRef]
- Imamura, S.; Takahashi, H.; Hayakawa, I.; Loyaga-Rendon, P.G.; Minakuchi, S. Effect of filler type and polishing on the discoloration of resin composite artificial teeth. Dent. Mater. J. 2008, 27, 802–808. [Google Scholar] [CrossRef]
- Kemaloglu, H.; Karacolak, G.; Turkun, L.S. Can reduced-step polishers be as effective as multiple-step polishers in enhancing surface smoothness? J. Esthet. Restor. Dent. 2017, 29, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Hasanain, F.A. Effect of ageing, staining and polishing on the colour stability of a single, a group shade and nano fill dental composite: An in-vitro study. J. Clin. Diagn. Res. 2022, 16. [Google Scholar] [CrossRef]
Material | Manufacturer | Type | Shade | Abbreviation Used in Tables | Composition |
---|---|---|---|---|---|
Omnichroma | Tokuyama Dental | Universal composite | Single Shade | Omnichroma | UDMA TEGDMA, -Uniform-sized supra-nanospherical filler (260 nm spherical SiO2-ZrO2) -Composite filler (260 nm spherical SiO2-ZrO2) -Filler loading 79% by wt. (68% by vol) |
Optishade (medium shade) | Kerr | Universal group-shade composite | Medium | Optishade | BisGMA BisDMA TEGDMA, -Spherical silica and zirconia particles formed from a molecular suspension (effective particle size is 5–400 nm) and 400 nm barium glass particles -Adaptive response technology (ART) with zirconia/silica nanoparticles and rheological modifiers -Filler loading 81% by wt. (64% by vol) |
Clearfil Majesty (Esthetic A2 shade) | Kuraray | Nano-filled composite | A2 | Conventional | Silinated barium glass filler, pre-polymerized organic filler, hydrophobic aromatic dimethacrylate, bis-GMA, di-camphorquinone, other additives |
Twist Dia Spiral Wheels | Kuraray | Two-step polishing system | - | Twist | Diamond particles |
Sof-Lex Spiral Wheels | 3M ESPE | Two-step polishing system | - | Soflex | Elastomer impregnated with aluminum oxide particles |
Occlubrush | Kerr | One-step polishing system | - | Occlubrush | Fibers that built-in silicon-carbide abrasive particles |
Palfique Bond | Tokuyama | Single-component self-etching adhesive | - | Universal bond | Phosphoric acid monomer, bisphenol A di-(2-hydroxy propoxy) dimethacrylate (Bis—GMA), triethyleneglycol dimethacrylate, 2-hydroxyethyl methacrylate (HEMA), camphorquinone, alcohol, and purified water |
Nescafe Gold | USA | İmmersion material | - | Coffee | Sugar, Instant Coffee, Glucose Syrup, Skim Milk Powder, Coconut Oil, Lactose, Salt, Milk Fat, Flavour, Dipotassium Phosphate, Sodium Polyphosphate, Sodium Citrate |
Distilled Water | T0–T1 | T0–T2 | T1–T2 |
---|---|---|---|
Ocllubrush | 1.80 ± 0.35 a | 2.18 ± 0.35 a | 1.69 ± 0.50 a |
Soflex | 1.83 ± 0.63 a | 2.83 ± 0.69 a | 2.51 ± 0.82 a |
Twist | 2.82 ± 2.01 a | 2.40 ± 1.03 a | 10.4 ± 1.40 b |
Coffee | T0–T1 | T0–T2 | T1–T2 |
Occlubrush | 9.82 ± 1.16 a | 10.0 ± 1.76 a | 5.17 ± 1.27 a |
Soflex | 11.4 ± 2.00 a | 5.35 ± 0.88 b | 12.0 ± 2.06 b |
Twist | 3.60 ± 1.56 b | 1.70 ± 0.55 c | 34.7 ± 0.96 c |
Distilled Water–Coffee | PT0–T1 | PT0–T2 | PT1–T2 |
Occlubrush | <0.001 | <0.001 | <0.001 |
Soflex | <0.001 | <0.001 | <0.001 |
Twist | 0.063 | 0.089 | <0.001 |
Distilled Water | T0–T1 | T0–T2 | T1–T2 |
---|---|---|---|
Occlubrush | 2.70 ± 2.01 a | 2.52 ± 0.71 a | 5.76 ± 1.04 a |
Soflex | 6.84 ± 10.1 b | 3.08 ± 1.19 a | 7.85 ± 9.64 a |
Twist | 2.71 ± 1.18 a | 2.93 ± 1.34 a | 14.5 ± 1.66 b |
Coffee | T0–T1 | T0–T2 | T1–T2 |
Occlubrush | 15.9 ± 1.98 b | 12.1 ± 1.42 b | 15.4 ± 2.94 a |
Soflex | 11.2 ± 2.95 a | 3.55 ± 1.54 a | 12.1 ± 2.88 a |
Twist | 9.17 ± 4.62 a | 3.35 ± 2.52 a | 31.9 ± 2.63 b |
Distilled Water–Coffee | PT0–T1 | PT0–T1 | PT0–T1 |
Occlubrush | <0.001 | <0.001 | <0.001 |
Soflex | <0.001 | <0.001 | <0.001 |
Twist | 0.063 | 0.063 | 0.063 |
Distilled Water | T0–T1 | T0–T2 | T1–T2 |
---|---|---|---|
Occlubrush | 2.01 ± 1.10 a | 1.70 ± 0.47 a | 2.71 ± 2.74 a |
Soflex | 3.33 ± 0.48 b | 4.17 ± 2.64 b | 1.86 ± 0.94 a |
Twist | 1.23 ± 0.34 a | 2.08 ± 1.17 a | 11.0 ± 1.06 b |
Coffee | T0–T1 | T0–T2 | T1–T2 |
Occlubrush | 13.3 ± 2.83 b | 10.9 ± 1.49 b | 11.1 ± 2.85 a |
Soflex | 9.71 ± 2.44 a | 2.95 ± 1.10 a | 8.91 ± 2.07 a |
Twist | 5.24 ± 2.61 a | 1.38 ± 0.36 a | 34.7 ± 1.42 b |
Distilled Water-Coffee | PT0–T1 | PT0–T2 | PT1–T2 |
Occlubrush | <0.001 | <0.001 | <0.001 |
Soflex | <0.001 | 0.280 | <0.001 |
Twist | <0.001 | 0.315 | <0.001 |
Distilled Water | Occlubrush–Soflex | Soflex–Twist | Occlubrush–Twist |
---|---|---|---|
T0 | 1.75 ± 0.45 a | 2.03 ± 0.40 a | 1.10 ± 0.53 b |
T1 | 1.31 ± 0.59 a | 2.94 ± 1.49 a | 2.50 ± 1.73 a |
T2 | 2.12 ± 0.79 b | 1.61 ± 1.10 b | 2.57 ± 1.17 a |
Coffee | Occlubrush–Soflex | Soflex–Twist | Occlubrush–Twist |
T0 | 1.25 ± 0.28 b | 1.52 ± 0.47 b | 0.92 ± 0.42 b |
T1 | 3.87 ± 2.34 a | 9.70 ± 2.31 a | 7.49 ± 1.78 a |
T2 | 5.29 ± 1.94 a | 5.55 ± 1.27 a | 10.0 ± 1.66 a |
Disttilled Water-Coffee | p Occlubrus–Soflex | p Soflex–Twist | p Occlubrush–Twist |
T0 | 0.011 | 0.075 | 0.436 |
T1 | 0.002 | <0.001 | <0.001 |
T2 | <0.001 | <0.001 | <0.001 |
Distilled Water | Occlubrush–Soflex | Soflex–Twist | Occlubrush–Twist |
---|---|---|---|
T0 | 3.58 ± 1.05 a | 2.43 ± 1.42 a | 4.91 ± 0.94 a |
T1 | 7.63 ± 11.0 a | 7.51 ± 9.79 a | 5.24 ± 0.56 a |
T2 | 4.02 ± 0.96 a | 1.83 ± 1.21 b | 4.44 ± 0.85 a |
Coffee | Occlubrush–Soflex | Soflex–Twist | Occlubrush–Twist |
T0 | 2.59 ± 1.17 b | 3.69 ± 1.69 a | 4.78 ± 0.73 b |
T1 | 6.96 ± 3.30 a | 6.38 ± 4.03 a | 10.9 ± 5.95 a |
T2 | 10.9 ± 1.93 a | 4.01 ± 2.07 a | 13.5 ± 1.59 a |
Distilled Water-Coffee | p Occlubrush–Soflex | p Soflex–Twist | p Occlubrush–Twist |
T0 | 0.075 | 0.075 | 0.912 |
T1 | 0.165 | 0.529 | 0.023 |
T2 | <0.001 | 0.003 | <0.001 |
Distilled Water | Occlubrush–Soflex | Soflex–Twist | Occlubrush–Twist |
---|---|---|---|
T0 | 2.70 ± 0.55 b | 2.34 ± 0.52 a | 1.23 ± 0.74 a |
T1 | 1.67 ± 1.07 a | 0.87 ± 0.54 b | 1.84 ± 0.87 a |
T2 | 1.80 ± 3.00 a | 2.13 ± 2.89 a | 1.67 ± 0.92 a |
Coffee | Occlubrush–Soflex | Soflex–Twist | Occlubrush–Twist |
T0 | 1.09 ± 0.70 b | 2.02 ± 1.24 a | 1.94 ± 1.11 b |
T1 | 4.52 ± 3.02 a | 5.84 ± 1.97 a | 8.53 ± 3.69 a |
T2 | 8.73 ± 1.71 a | 1.53 ± 1.17 b | 9.96 ± 1.13 a |
Distilled Water–Coffee | p Occlubrush–Soflex | p Soflex–Twist | p Occlubrush–Twist |
T0 | <0.001 | 0.739 | 0.165 |
T1 | 0.003 | <0.001 | <0.001 |
T2 | <0.001 | 1.00 | <0.001 |
Conventional–Conventional | Occlubrush | Soflex | Twist |
---|---|---|---|
T0 | 0.89 ± 0.52 bX | 1.08 ± 0.35 aX | 0.79 ± 0.38 aX |
T1 | 9.57 ± 1.08 aX | 11.4 ± 2.08 bX | 4.08 ± 1.73 bY |
T2 | 9.62 ± 2.30 aX | 6.36 ± 0.72 cX | 1.73 ± 1.13 aY |
Conventional–OMNI | Occlubrush | Soflex | Twist |
T0 | 1.27 ± 0.35 bY | 2.90 ± 0.96 aX | 2.03 ± 1.70 aX |
T1 | 15.5 ± 1.76 aX | 14.2 ± 8.80 bX | 9.00 ± 4.45 bY |
T2 | 13.2 ± 1.76 aY | 4.57 ± 1.68 aX | 3.00 ± 1.23 aX |
Conventional–OPTI | Occlubrush | Soflex | Twist |
T0 | 1.97 ± 1.05 bY | 1.75 ± 0.72 aX | 0.72 ± 0.25 aX |
T1 | 13.3 ± 2.48 aY | 9.35 ± 2.33 bX | 5.53 ± 2.61 bX |
T2 | 10.6 ± 0.96 aY | 3.69 ± 2.39 cX | 2.26 ± 1.01 cX |
COMPOSITE REPAIRMENT MATERIAL | POLISHING TYPE | MEASUREMENT TIME | ΔL | ΔC | ΔH |
---|---|---|---|---|---|
CLEARFIL MAJESTY ESTHETIC (A2 SHADE) (GROUP 1) | Occlubrush | T0 | 0.09 | 0.15 | −0.04 |
T1 | 8.89 | −18.39 | 7.68 | ||
T2 | 10.76 | −13.98 | 9.94 | ||
Soflex Spiral Wheels | T0 | −1.37 | 0.36 | −0.29 | |
T1 | 7.64 | −19.66 | 10.2 | ||
T2 | 6.96 | −9.27 | 9.54 | ||
Twist Dia Wheels | T0 | 0 | −0.42 | 0.32 | |
T1 | 4.66 | −5.39 | −0.34 | ||
T2 | 2.83 | −5.21 | −2.69 | ||
OMNICHROMA (ONE-SHADE) (GROUP 2) | Occlubrush | T0 | −0.65 | −0.07 | −0.98 |
T1 | 15.18 | −22.79 | 16.59 | ||
T2 | 10.49 | −14.83 | 27.84 | ||
Soflex Spiral Wheels | T0 | 3.34 | −0.98 | 3.33 | |
T1 | 23.93 | −15.3 | 18.51 | ||
T2 | 4.68 | −5.19 | 11.61 | ||
Twist Dia Wheels | T0 | −0.27 | 1.08 | −5.61 | |
T1 | 10.16 | −10.07 | 17.45 | ||
T2 | 4.5 | −1.24 | 13.45 | ||
OPTISHADE (MEDIUM SHADE) (GROUP 3) | Occlubrush | T0 | −1.04 | 0.18 | −3.54 |
T1 | 18.5 | −22.99 | 12.87 | ||
T2 | 14.39 | −16.89 | 7.79 | ||
Soflex Spiral Wheels | T0 | 0.8 | −0.45 | −0.95 | |
T1 | 5.22 | −16.91 | 6.64 | ||
T2 | 1.34 | −5.19 | 0.98 | ||
Twist Dia Wheels | T0 | 0.28 | −0.08 | 0.69 | |
T1 | 7.89 | −10.07 | 6.26 | ||
T2 | 2.65 | −3.32 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksoy Vaizoğlu, G.; Ulusoy, N.; Güleç Alagöz, L. Effect of Coffee and Polishing Systems on the Color Change of a Conventional Resin Composite Repaired by Universal Resin Composites: An In Vitro Study. Materials 2023, 16, 6066. https://doi.org/10.3390/ma16176066
Aksoy Vaizoğlu G, Ulusoy N, Güleç Alagöz L. Effect of Coffee and Polishing Systems on the Color Change of a Conventional Resin Composite Repaired by Universal Resin Composites: An In Vitro Study. Materials. 2023; 16(17):6066. https://doi.org/10.3390/ma16176066
Chicago/Turabian StyleAksoy Vaizoğlu, Gözde, Nuran Ulusoy, and Laden Güleç Alagöz. 2023. "Effect of Coffee and Polishing Systems on the Color Change of a Conventional Resin Composite Repaired by Universal Resin Composites: An In Vitro Study" Materials 16, no. 17: 6066. https://doi.org/10.3390/ma16176066
APA StyleAksoy Vaizoğlu, G., Ulusoy, N., & Güleç Alagöz, L. (2023). Effect of Coffee and Polishing Systems on the Color Change of a Conventional Resin Composite Repaired by Universal Resin Composites: An In Vitro Study. Materials, 16(17), 6066. https://doi.org/10.3390/ma16176066