Review on Multicatalytic Behavior of Ba0.85Ca0.15Ti0.9Zr0.1O3 Ceramic
Abstract
:1. Introduction
2. Ferroelectric Materials
2.1. Fundamentals of Ferroelectric Materials
2.2. Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCZTO) Ceramics
3. Multicatalytic Ability of Ferroelectric Materials
3.1. Photocatalysis Process
3.2. Pyrocatalysis Process
3.3. Piezocatalysis Process
3.3.1. Energy Band Gap Theory
3.3.2. Screening Effect Theory
3.4. Multicatalytic Capability of BCZTO
4. Future Scope of Ferroelectric BCZTO Ceramic
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, V.K. Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef] [PubMed]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef] [PubMed]
- Comninellis, C.; Kapalka, A.; Malato, S.; Parsons, S.A.; Poulios, I.; Mantzavinos, D. Advanced oxidation processes for water treatment: Advances and trends for R&D. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 2008, 83, 769–776. [Google Scholar]
- Gaur, A.; Dubey, S.; Elqahtani, Z.M.; Ahmed, S.B.; Al-Buriahi, M.S.A.; Vaish, R.; Chauhan, V.S. Effect of Poling on Multicatalytic Performance of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Sr0.3)TiO3 Ferroelectric Ceramic for Dye Degradation. Materials 2022, 15, 8217. [Google Scholar] [CrossRef] [PubMed]
- Gaur, A.; Chauhan, V.S.; Vaish, R. Planetary ball milling induced piezocatalysis for dye degradation using BaTiO3 ceramics. Environ. Sci. Adv. 2023, 2, 462–472. [Google Scholar] [CrossRef]
- Jin, L.; Li, F.; Zhang, S. Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures. J. Am. Ceram. Soc. 2014, 97, 1–27. [Google Scholar] [CrossRef]
- Wei, X.; Domingo, N.; Sun, Y.; Balke, N.; Dunin-Borkowski, R.E.; Mayer, J. Progress on emerging ferroelectric materials for energy harvesting, storage and conversion. Adv. Energy Mater. 2022, 12, 2201199. [Google Scholar] [CrossRef]
- Mikolajick, T.; Park, M.H.; Begon-Lours, L.; Slesazeck, S. From Ferroelectric Material Optimization to Neuromorphic Devices. Adv. Mater. 2022, 2206042. [Google Scholar] [CrossRef]
- Butler, K.T.; Frost, J.M.; Walsh, A. Ferroelectric materials for solar energy conversion: Photoferroics revisited. Energy Environ. Sci. 2015, 8, 838–848. [Google Scholar] [CrossRef]
- Yuan, Y.; Xiao, Z.; Yang, B.; Huang, J. Arising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 2014, 2, 6027–6041. [Google Scholar] [CrossRef]
- Bowen, C.R.; Kim, H.A.; Weaver, P.M.; Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 2014, 7, 25–44. [Google Scholar] [CrossRef]
- Xu, Y. Ferroelectric Materials and Their Applications; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 1483290956. [Google Scholar]
- Tagantsev, A.K.; Sherman, V.O.; Astafiev, K.F.; Venkatesh, J.; Setter, N. Ferroelectric materials for microwave tunable applications. J. Electroceram. 2003, 11, 5–66. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, R.; Gai, S.; Yang, P. The fundamental and application of piezoelectric materials for tumor therapy: Recent advances and outlook. Mater. Horiz. 2023, 10, 1140–1184. [Google Scholar]
- Wu, J.; Xu, Q.; Lin, E.; Yuan, B.; Qin, N.; Thatikonda, S.K.; Bao, D. Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3. ACS Appl. Mater. Interfaces 2018, 10, 17842–17849. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Luo, W.; Yu, S.; Yang, X.; Wu, Z.; Zhang, H.; Gao, J.; Mai, Y.-W.; Li, Y.; Jia, Y. Synergistic effect of photocatalysis and pyrocatalysis of pyroelectric ZnSnO3 nanoparticles for dye degradation. Ceram. Int. 2020, 46, 9786–9793. [Google Scholar] [CrossRef]
- Ding, W.; Lu, J.; Tang, X.; Kou, L.; Liu, L. Ferroelectric Materials and Their Applications in Activation of Small Molecules. ACS Omega 2023, 8, 6164–6174. [Google Scholar] [CrossRef]
- Gaur, A.; Sharma, M.; Chauhan, V.S.; Vaish, R. Solar/visible light photocatalytic dye degradation using BaTi1-xFexO3 ceramics. J. Am. Ceram. Soc. 2022, 105, 5140–5150. [Google Scholar] [CrossRef]
- Shih, W.Y.; Shih, W.-H.; Aksay, I.A. Size dependence of the ferroelectric transition of small BaTiO3 particles: Effect of depolarization. Phys. Rev. B 1994, 50, 15575. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y.; Wang, Y.; Hu, X.; Yan, W.; Ke, X.; Zhong, L.; He, Y.; Ren, X. Designing high dielectric permittivity material in barium titanate. J. Phys. Chem. C 2017, 121, 13106–13113. [Google Scholar] [CrossRef]
- Woldu, T.; Raneesh, B.; Sreekanth, P.; Reddy, M.V.R.; Philip, R.; Kalarikkal, N. Size dependent nonlinear optical absorption in BaTiO3 nanoparticles. Chem. Phys. Lett. 2015, 625, 58–63. [Google Scholar] [CrossRef]
- Wang, Z.; Suryavanshi, A.P.; Yu, M.-F. Ferroelectric and piezoelectric behaviors of individual single crystalline BaTiO3 nanowire under direct axial electric biasing. Appl. Phys. Lett. 2006, 89, 82903. [Google Scholar] [CrossRef]
- Von Hippel, A. Ferroelectricity, domain structure, and phase transitions of barium titanate. Rev. Mod. Phys. 1950, 22, 221. [Google Scholar] [CrossRef]
- Everhardt, A.S.; Denneulin, T.; Grünebohm, A.; Shao, Y.-T.; Ondrejkovic, P.; Zhou, S.; Domingo, N.; Catalan, G.; Hlinka, J.; Zuo, J.-M. Temperature-independent giant dielectric response in transitional BaTiO3 thin films. Appl. Phys. Rev. 2020, 7, 11402. [Google Scholar] [CrossRef]
- Kwei, G.H.; Lawson, A.C.; Billinge, S.J.L.; Cheong, S.W. Structures of the ferroelectric phases of barium titanate. J. Phys. Chem 1993, 97, 2368–2377. [Google Scholar] [CrossRef]
- Liu, W.; Cheng, L.; Li, S. Prospective of (BaCa)(ZrTi)O3 lead-free piezoelectric ceramics. Crystals 2019, 9, 179. [Google Scholar] [CrossRef]
- Haertling, G.H. Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 1999, 82, 797–818. [Google Scholar] [CrossRef]
- Valasek, J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 1921, 17, 475. [Google Scholar] [CrossRef]
- Valasek, J. Piezo-electric activity of Rochelle salt under various conditions. Phys. Rev. 1922, 19, 478. [Google Scholar] [CrossRef]
- Valasek, J. Properties of Rochelle salt related to the piezo-electric effect. Phys. Rev. 1922, 20, 639. [Google Scholar] [CrossRef]
- Kanzig, W. History of ferroelectricity 1938–1955. Ferroelectrics 1987, 74, 285–291. [Google Scholar] [CrossRef]
- Cross, L.E.; Newnham, R.E. History of ferroelectrics. Ceram. Civiliz. 1987, 3, 289–305. [Google Scholar]
- Fousek, J. Ferroelectricity: Remarks on historical aspects and present trends. Ferroelectrics 1991, 113, 3–20. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, H.; Zhu, Z.; Zeng, J.; Zhang, D.; Eriksson, M.; Viola, G.; Yan, H. Deciphering the peculiar hysteresis loops of 0.05 Pb (Mn1/3Sb2/3) O3–0.95 Pb (Zr0.52Ti0.48) O3 piezoelectric ceramics. Acta Mater. 2023, 244, 118563. [Google Scholar] [CrossRef]
- Kong, Y.; Liu, S.; Zhao, Y.; Liu, H.; Chen, S.; Xu, J. Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate. Appl. Phys. Lett. 2007, 91, 081908. [Google Scholar] [CrossRef]
- Stock, M.; Dunn, S. Influence of the ferroelectric nature of lithium niobate to drive photocatalytic dye decolorization under artificial solar light. J. Phys. Chem. C 2012, 116, 20854–20859. [Google Scholar] [CrossRef]
- Gaur, A.; Sharma, M.; Chauhan, V.S.; Vaish, R. Visible light photocatalytic activity in BiFeO3 glass-ceramics. Mater. Chem. Phys. 2023, 303, 127710. [Google Scholar] [CrossRef]
- Wu, J.; Qin, N.; Lin, E.; Yuan, B.; Kang, Z.; Bao, D. Synthesis of Bi4Ti3O12 decussated nanoplates with enhanced piezocatalytic activity. Nanoscale 2019, 11, 21128–21136. [Google Scholar] [CrossRef]
- Yuan, L.; Fan, W.; Yang, X.; Ge, S.; Xia, C.; Foong, S.Y.; Liew, R.K.; Wang, S.; Van Le, Q.; Lam, S.S. Piezoelectric PAN/BaTiO3 nanofiber membranes sensor for structural health monitoring of real-time damage detection in composite. Compos. Commun. 2021, 25, 100680. [Google Scholar] [CrossRef]
- Dai, Z.; Li, D.; Zhou, Z.; Zhou, S.; Liu, W.; Liu, J.; Wang, X.; Ren, X. A strategy for high performance of energy storage and transparency in KNN-based ferroelectric ceramics. Chem. Eng. J. 2022, 427, 131959. [Google Scholar] [CrossRef]
- Kang, M.-G.; Jung, W.-S.; Kang, C.-Y.; Yoon, S.-J. Recent progress on PZT based piezoelectric energy harvesting technologies. Actuators 2016, 5, 5. [Google Scholar] [CrossRef]
- Roscow, J.I.; Lewis, R.W.C.; Taylor, J.; Bowen, C.R. Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of merit. Acta Mater. 2017, 128, 207–217. [Google Scholar] [CrossRef]
- Liu, D.; Jin, C.; Zhang, Y.; He, Y.; Wang, F. Integrated piezo-photocatalysis of electrospun Bi4Ti3O12 nanostructures by bi-harvesting visible light and ultrasonic energies. Ceram. Int. 2021, 47, 7692–7699. [Google Scholar] [CrossRef]
- Ji, W.; Fang, B.; Lu, X.; Zhang, S.; Yuan, N.; Ding, J. Tailoring structure and performance of BCZT ceramics prepared via hydrothermal method. Phys. B Condens. Matter 2019, 567, 65–78. [Google Scholar] [CrossRef]
- Wang, P.; Li, Y.; Lu, Y. Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1O3) O3 lead-free ceramics by optimizing calcination and sintering temperature. J. Eur. Ceram. Soc. 2011, 31, 2005–2012. [Google Scholar] [CrossRef]
- Turygin, A.P.; Neradovskiy, M.M.; Naumova, N.A.; Zayats, D.V.; Coondoo, I.; Kholkin, A.L.; Shur, V.Y. Domain structures and local switching in lead-free piezoceramics Ba0.85Ca0.15Ti0.90Zr0.10O3. J. Appl. Phys. 2015, 118, 72002. [Google Scholar] [CrossRef]
- Yao, S.; Ren, W.; Ji, H.; Wu, X.; Shi, P.; Xue, D.; Ren, X.; Ye, Z.-G. High pyroelectricity in lead-free 0.5Ba(Zr0.2Ti0.8) O3–0.5 (Ba0.7Ca0.3)TiO3 ceramics. J. Phys. D Appl. Phys. 2012, 45, 195301. [Google Scholar] [CrossRef]
- Sahoo, B.; Thejas, T.S.; Politova, E.D.; Panda, P.K. Effect of dopants on electrical properties of BCT-BZT lead free piezo ceramics: A review. Ferroelectrics 2021, 582, 46–62. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, V.P.; Kumar, S.; Vaish, R. Multicatalytic behavior of Ba0.85Ca0.15Ti0.9Zr0.1O3 ceramics for pharmaceutical/dye/bacterial treatments. J. Appl. Phys. 2020, 127, 135103. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Yang, W.; Wang, X. Implementation of ferroelectric materials in photocatalytic and photoelectrochemical water splitting. Nanoscale Horiz. 2020, 5, 1174–1187. [Google Scholar] [CrossRef]
- Cao, F.; Xiong, J.; Wu, F.; Liu, Q.; Shi, Z.; Yu, Y.; Wang, X.; Li, L. Enhanced photoelectrochemical performance from rationally designed anatase/rutile TiO2 heterostructures. ACS Appl. Mater. Interfaces 2016, 8, 12239–12245. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Shi, J.; Yu, Y. One-dimensional titanium dioxide nanomaterials: Nanowires, nanorods, and nanobelts. Chem. Rev. 2014, 114, 9346–9384. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, Z.; Yin, X.; Kvit, A.; Liao, Q.; Kang, Z.; Yan, X.; Zhang, Y.; Wang, X. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nat. Energy 2017, 2, 17045. [Google Scholar] [CrossRef]
- Singh, V.P.; Sharma, M.; Vaish, R. Enhanced dye adsorption and rapid photocatalysis of candle soot coated BaTiO3 ceramics. Mater. Chem. Phys. 2020, 252, 123311. [Google Scholar] [CrossRef]
- Liang, Z.; Yan, C.-F.; Rtimi, S.; Bandara, J. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Appl. Catal. B Environ. 2019, 241, 256–269. [Google Scholar] [CrossRef]
- Ali, I. New generation adsorbents for water treatment. Chem. Rev. 2012, 112, 5073–5091. [Google Scholar] [CrossRef] [PubMed]
- Porwal, C.; Verma, S.; Chauhan, V.S.; Vaish, R. Bismuth zinc borate-Polyacrylonitrile nanofibers for photo-piezocatalysis. J. Ind. Eng. Chem. 2023, 124, 358–367. [Google Scholar] [CrossRef]
- Teh, C.M.; Mohamed, A.R. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. J. Alloys Compd. 2011, 509, 1648–1660. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Krishnan, V. Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal. 2020, 10, 10253–10315. [Google Scholar] [CrossRef]
- Khan, M.A.; Nadeem, M.A.; Idriss, H. Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: A review. Surf. Sci. Rep. 2016, 71, 1–31. [Google Scholar] [CrossRef]
- Liqiang, J.; Xiaojun, S.; Jing, S.; Weimin, C.; Zili, X.; Yaoguo, D.; Honggang, F. Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis. Sol. Energy Mater. Sol. Cells 2003, 79, 133–151. [Google Scholar] [CrossRef]
- Wenderich, K.; Mul, G. Methods, mechanism, and applications of photodeposition in photocatalysis: A review. Chem. Rev. 2016, 116, 14587–14619. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Sharma, M.; Vaish, R. Emerging trends in glass-ceramic photocatalysts. Chem. Eng. J. 2021, 407, 126971. [Google Scholar] [CrossRef]
- Zhang, Y.; Phuong, P.T.T.; Roake, E.; Khanbareh, H.; Wang, Y.; Dunn, S.; Bowen, C. Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials. Joule 2020, 4, 301–309. [Google Scholar] [CrossRef]
- Marvan, M.; Fousek, J. Pyroelectricity and compositionally graded ferroelectrics: A brief review of our theoretical approach. Phase Transit. 2006, 79, 485–492. [Google Scholar] [CrossRef]
- Bowen, C.R.; Taylor, J.; LeBoulbar, E.; Zabek, D.; Chauhan, A.; Vaish, R. Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 2014, 7, 3836–3856. [Google Scholar] [CrossRef]
- Xu, X.; Xiao, L.; Jia, Y.; Wu, Z.; Wang, F.; Wang, Y.; Haugen, N.O.; Huang, H. Pyro-catalytic hydrogen evolution by Ba 0.7 Sr 0.3 TiO3 nanoparticles: Harvesting cold–hot alternation energy near room-temperature. Energy Environ. Sci. 2018, 11, 2198–2207. [Google Scholar] [CrossRef]
- Zhao, Q.; Xiao, H.; Huangfu, G.; Zheng, Z.; Wang, J.; Wang, F.; Guo, Y. Highly-efficient piezocatalytic performance of nanocrystalline BaTi0.89Sn0.11O3 catalyst with Tc near room temperature. Nano Energy 2021, 85, 106028. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Wu, Z.; Jia, Y.; Xiao, L.; Liu, Y. Strong pyro-electro-chemical coupling of Ba0.7Sr0.3TiO3@ Ag pyroelectric nanoparticles for room-temperature pyrocatalysis. Nano Energy 2018, 50, 581–588. [Google Scholar] [CrossRef]
- Chen, M.; Jia, Y.; Li, H.; Wu, Z.; Huang, T.; Zhang, H. Enhanced pyrocatalysis of the pyroelectric BiFeO3/gC3N4 heterostructure for dye decomposition driven by cold-hot temperature alternation. J. Adv. Ceram. 2021, 10, 338–346. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, J.; Tan, L.; Jin, C.; Li, M.; Chen, B.; Zhang, G.; Zhang, Y.; Wang, F. Enhanced piezocatalytic hydrogen evolution performance of bismuth vanadate by the synergistic effect of facet engineering and cocatalyst engineering. J. Colloid Interface Sci. 2023, 646, 159–166. [Google Scholar] [CrossRef]
- Hong, K.-S.; Xu, H.; Konishi, H.; Li, X. Direct water splitting through vibrating piezoelectric microfibers in water. J. Phys. Chem. Lett. 2010, 1, 997–1002. [Google Scholar] [CrossRef]
- Hong, K.-S.; Xu, H.; Konishi, H.; Li, X. Piezoelectrochemical effect: A new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers. J. Phys. Chem. C 2012, 116, 13045–13051. [Google Scholar] [CrossRef]
- You, H.; Jia, Y.; Wu, Z.; Xu, X.; Qian, W.; Xia, Y.; Ismail, M. Strong piezo-electrochemical effect of multiferroic BiFeO3 square micro-sheets for mechanocatalysis. Electrochem. Commun. 2017, 79, 55–58. [Google Scholar] [CrossRef]
- Wu, J.; Qin, N.; Bao, D. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 2018, 45, 44–51. [Google Scholar] [CrossRef]
- Amiri, O.; Salar, K.; Othman, P.; Rasul, T.; Faiq, D.; Saadat, M. Purification of wastewater by the piezo-catalyst effect of PbTiO3 nanostructures under ultrasonic vibration. J. Hazard. Mater. 2020, 394, 122514. [Google Scholar] [CrossRef]
- Ling, J.; Wang, K.; Wang, Z.; Huang, H.; Zhang, G. Enhanced piezoelectric-induced catalysis of SrTiO3 nanocrystal with well-defined facets under ultrasonic vibration. Ultrason. Sonochem. 2020, 61, 104819. [Google Scholar] [CrossRef]
- Wang, P.; Li, X.; Fan, S.; Chen, X.; Qin, M.; Long, D.; Tadé, M.O.; Liu, S. Impact of oxygen vacancy occupancy on piezo-catalytic activity of BaTiO3 nanobelt. Appl. Catal. B Environ. 2020, 279, 119340. [Google Scholar] [CrossRef]
- Lin, E.; Kang, Z.; Wu, J.; Huang, R.; Qin, N.; Bao, D. BaTiO3 nanocubes/cuboids with selectively deposited Ag nanoparticles: Efficient piezocatalytic degradation and mechanism. Appl. Catal. B Environ. 2021, 285, 119823. [Google Scholar] [CrossRef]
- Bößl, F.; Tudela, I. Piezocatalysis: Can catalysts really dance? Curr. Opin. Green Sustain. Chem. 2021, 32, 100537. [Google Scholar] [CrossRef]
- Wang, K.; Han, C.; Li, J.; Qiu, J.; Sunarso, J.; Liu, S. The mechanism of piezocatalysis: Energy band theory or screening charge effect? Angew. Chem. 2022, 134, e202110429. [Google Scholar] [CrossRef]
- Starr, M.B.; Wang, X. Coupling of piezoelectric effect with electrochemical processes. Nano Energy 2015, 14, 296–311. [Google Scholar] [CrossRef]
- Sharma, M.; Vaish, R. Piezo/pyro/photo-catalysis activities in Ba0.85Ca0.15(Ti0.9Zr0.1)1-xFexO3 ceramics. J. Am. Ceram. Soc. 2021, 104, 45–56. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Wu, J.M. Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect. Nano Energy 2019, 56, 74–81. [Google Scholar] [CrossRef]
- Chen, L.; Li, H.; Wu, Z.; Feng, L.; Yu, S.; Zhang, H.; Gao, J.; Mai, Y.-W.; Jia, Y. Enhancement of pyroelectric catalysis of ferroelectric BaTiO3 crystal: The action mechanism of electric poling. Ceram. Int. 2020, 46, 16763–16769. [Google Scholar] [CrossRef]
- Ezraty, B.; Gennaris, A.; Barras, F.; Collet, J.-F. Oxidative stress, protein damage and repair in bacteria. Nat. Rev. Microbiol. 2017, 15, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Chauhan, A.; Vaish, R. Enhanced electrocaloric effect in Fe-doped (Ba0.85Ca0.15Zr0.1Ti0.9)O3 ferroelectric ceramics. Appl. Mater. Today 2015, 1, 37–44. [Google Scholar] [CrossRef]
- Humburg, H.I.; Acosta, M.; Jo, W.; Webber, K.G.; Rödel, J. Stress-dependent electromechanical properties of doped (Ba1−xCax)(ZryTi1−y)O3. J. Eur. Ceram. Soc. 2015, 35, 1209–1217. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, H.; Si, S.; Wang, T.; Zheng, D.; Yang, P.; Chu, J. Band gap narrowing and magnetic properties of transition-metal-doped Ba0. 85Ca0. 15Ti0. 9Zr0. 1O3 lead-free ceramics. J. Am. Ceram. Soc. 2020, 103, 2491–2498. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Z.; Zhang, M.; Guo, L. Piezotronics enhanced photocatalytic activities of Ag-BaTiO3 plasmonic photocatalysts. J. Alloys Compd. 2019, 801, 483–488. [Google Scholar] [CrossRef]
- Nithya, P.M.; Devi, L.G. Effect of surface Ag metallization on the photocatalytic properties of BaTiO3: Surface plasmon effect and variation in the Schottky barrier height. Surf. Interfaces 2019, 15, 205–215. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, G.; Vaish, R. Ag-nanoparticles-loaded Ba0.85Ca0.15Ti0.9Zr0.1O3 for multicatalytic dye degradation. Nanotechnology 2021, 32, 145716. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Yu, S.; Fang, F.; Lai, M.; Sun, R.; Wong, C.-P. Investigating the mechanism of catalytic reduction of silver nitrate on the surface of barium titanate at room temperature: Oxygen vacancies play a key role. RSC Adv. 2015, 5, 3377–3380. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Wang, T.; Sun, L.; Du, Y.; Li, Y.; Li, H. Photocatalytic reduction of p-nitrophenol over plasmonic M (M = Ag, Au)/SnNb2O6 nanosheets. Appl. Surf. Sci. 2019, 466, 342–351. [Google Scholar] [CrossRef]
- Cui, Y.; Goldup, S.M.; Dunn, S. Photodegradation of Rhodamine B over Ag modified ferroelectric BaTiO3 under simulated solar light: Pathways and mechanism. RSC Adv. 2015, 5, 30372–30379. [Google Scholar] [CrossRef]
- Gaur, A.; Sharma, M.; Chauhan, V.S.; Vaish, R. BaTiO3 crystallized glass-ceramic for water cleaning application via piezocatalysis. Nano-Struct. Nano-Objects 2023, 35, 101005. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, G.; Vaish, R. Piezocatalysis in ferroelectric Ba0.85Ca0.15Zr0.1Ti0.90O3/polyvinylidene difluoride (PVDF) composite film. J. Appl. Phys. 2021, 130, 85107. [Google Scholar] [CrossRef]
- Lu, L.; Ding, W.; Liu, J.; Yang, B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy 2020, 78, 105251. [Google Scholar] [CrossRef]
- Sharma, M.; Vaish, R. Vibration energy harvesting for degradation of dye and bacterial cells using cement-based Ba0.85Ca0.15Zr0.1Ti0.90O3 composites. Mater. Today Commun. 2020, 25, 101592. [Google Scholar] [CrossRef]
- Kappadan, S.; Gebreab, T.W.; Thomas, S.; Kalarikkal, N. Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants. Mater. Sci. Semicond. Process. 2016, 51, 42–47. [Google Scholar] [CrossRef]
- Cui, Y.; Briscoe, J.; Dunn, S. Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3—Influence on the carrier separation and stern layer formation. Chem. Mater. 2013, 25, 4215–4223. [Google Scholar] [CrossRef]
- Min, M.; Liu, Y.; Song, C.; Zhao, D.; Wang, X.; Qiao, Y.; Feng, R.; Hao, W.; Tao, P.; Shang, W. Photothermally enabled pyro-catalysis of a BaTiO3 nanoparticle composite membrane at the liquid/air interface. ACS Appl. Mater. Interfaces 2018, 10, 21246–21253. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Wang, T.; Chen, B.; Malkoske, T.; Yu, S.; Tang, Y. Degradation of tetracycline with BiFeO3 prepared by a simple hydrothermal method. Materials 2015, 8, 6360–6378. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Wu, Z.; Zhang, L.; Ying, Y.; Liu, Y.; Fei, L.; Chen, X.; Jia, Y.; Wang, Y.; Wang, F. Harvesting the vibration energy of BiFeO3 nanosheets for hydrogen evolution. Angew. Chem. 2019, 131, 11905–11910. [Google Scholar] [CrossRef]
- Xu, J.; Zang, T.; Du, D.; Kumar, S.; Sharma, M.; Vaish, R. Effect of poling on piezocatalytic removal of muti-pollutants using BaTiO3. J. Am. Ceram. Soc. 2021, 104, 1661–1668. [Google Scholar] [CrossRef]
- Ma, J.; Wu, Z.; Luo, W.; Zheng, Y.; Jia, Y.; Wang, L.; Huang, H. High pyrocatalytic properties of pyroelectric BaTiO3 nanofibers loaded by noble metal under room-temperature thermal cycling. Ceram. Int. 2018, 44, 21835–21841. [Google Scholar] [CrossRef]
- Wu, J.; Mao, W.; Wu, Z.; Xu, X.; You, H.; Jia, Y. Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold–hot alternation. Nanoscale 2016, 8, 7343–7350. [Google Scholar] [CrossRef]
- You, H.; Ma, X.; Wu, Z.; Fei, L.; Chen, X.; Yang, J.; Liu, Y.; Jia, Y.; Li, H.; Wang, F. Piezoelectrically/pyroelectrically-driven vibration/cold-hot energy harvesting for mechano-/pyro-bi-catalytic dye decomposition of NaNbO3 nanofibers. Nano Energy 2018, 52, 351–359. [Google Scholar] [CrossRef]
- Gutmann, E.; Benke, A.; Gerth, K.; Böttcher, H.; Mehner, E.; Klein, C.; Krause-Buchholz, U.; Bergmann, U.; Pompe, W.; Meyer, D.C. Pyroelectrocatalytic disinfection using the pyroelectric effect of nano-and microcrystalline LiNbO3 and LiTaO3 particles. J. Phys. Chem. C 2012, 116, 5383–5393. [Google Scholar] [CrossRef]
- Li, X.; Tong, W.; Shi, J.; Chen, Y.; Zhang, Y.; An, Q. Tribocatalysis mechanisms: Electron transfer and transition. J. Mater. Chem. A 2023. [Google Scholar] [CrossRef]
- Bilińska, L.; Gmurek, M. Novel trends in AOPs for textile wastewater treatment. Enhanced dye by-products removal by catalytic and synergistic actions. Water Resour. Ind. 2021, 26, 100160. [Google Scholar] [CrossRef]
Ferroelectric Materials as Photocatalysts and Their Pollutant Degradation Performances | ||||
Catalyst | Form | Organic Pollutant | Source | Performance |
BaTiO3 [100] Ag-loaded BaTiO3 [101] BaTiO3 [102] BiFeO3 [103] | Nanoparticles (0.07 g) Ag nanoparticles on BaTiO3 (0.15 g) Pellet Micro-particles (0.5 g/L) | MB dye (250 mL) (~5 mg/L) RB dye (50 mL) (~10 mg/L) E. coli bacteria (106 CFU/mL) Tetracycline (~10 mg/L) | 150 W mercury lamp Solar simulator 365 nm UV length Visible light (>420 nm wavelength) | 64% in 50 min 100% in 60 min ~90% under UV light in 30 min 69 % in 120 min |
Ferroelectric material as piezocatalysts and their pollutant degradation performance | ||||
Catalyst | Form | Organic pollutant | Source | Performance |
BaTiO3 [75] Bi4Ti3O12 [38] BiFeO3 [104] BaTiO3 [105] | Nanowires (0.1 g) Nanostructure (0.05 g) Nanosheets (0.05 g) Powder (micron-sized) | RB dye (100 mL) (~5 mg/L) RB dye (100 mL) (~5 mg/L) RB dye (50 mL) (~5 mg/L) Ciprofloxacin (10 mL) | Sonicator (40 kHz, 80 W) Sonicator (40 kHz, 80 W) Sonicator (45 kHz) Sonicator (40 kHz, 70 W) | 100% in 60 min 95.7% in 160 min 94.1% in 50 min 85% in 150 min |
Ferroelectric material as pyrocatalysts and their pollutant degradation performance | ||||
Catalyst | Form | Organic pollutant | Source | Performance |
BaTiO3@Ag [106] BiFeO3 [107] Ba0.7Sr0.3TiO3@Ag [69] NaNbO3 [108] LiNbO3 and LiTaO3 [109] | Nanofibers Nanoparticles Nanoparticles Nanoparticles Nanoparticles | RB dye (5 mg/L) RB dye (5 mg/L) RB dye (5 mg/L) RB dye (5 mg/L) E. coli bacteria inactivation | 72 cycles, (30–52 °C) 85 cycles, (27–38 °C) 50 cycles, (20–50 °C) 24 cycles, (23–50 °C) 60 min, (20–45 °C) | 92% 99% 90% 96% 95% |
Ferroelectric BCZTO as photo/piezo/pyrocatalyst and its pollutant degradation performance | ||||
Catalyst | Form | Organic pollutant | Process/Source | Performance |
BCZTO [49] Ag-loaded BCZTO [92] Ag-loaded BCZTO [92] BCZTO-Fe (1%) [84] BCZTO [84] 10 wt.% BCZTO/PVDF film [97] Cement-based BCZTO composite [99] | Pellet Micron-sized powder (0.1 g) Micron-sized powder (0.1 g) Pellet Pellet Pellet Micron-sized BCZTO in PVDF film Poled BCZTO in cement | RB dye (10 mg/L) RB dye (20 mL) MB dye (5 mg/L, 10 mL) MB dye (~5 mg/L) MB dye (~5 mg/L) MB dye (~5 mg/L) MB dye (~5 mg/L) E. coli bacteria | Piezocatalysis/ sonicator (40 kHz, 70 W) Photocatalysis/ visible light Piezocatalysis/ sonicator (40 kHz) Photocatalysis/ visible light (15 W, 420 nm LED) Piezocatalysis/ sonicator (40 kHz, 70W) Pyrocatalysis/ 10–45 °C, 200 cycles Piezocatalysis/ sonicator (40 kHz) Piezocatalysis/ sonicator (40 kHz) | 90% in 180 min 99% in 40 min 96% in 90 min 94% in 210 min ~78% in 150 min ~92% 91% in 180 min ~99% in 90 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaur, A.; Porwal, C.; Boukhris, I.; Chauhan, V.S.; Vaish, R. Review on Multicatalytic Behavior of Ba0.85Ca0.15Ti0.9Zr0.1O3 Ceramic. Materials 2023, 16, 5710. https://doi.org/10.3390/ma16165710
Gaur A, Porwal C, Boukhris I, Chauhan VS, Vaish R. Review on Multicatalytic Behavior of Ba0.85Ca0.15Ti0.9Zr0.1O3 Ceramic. Materials. 2023; 16(16):5710. https://doi.org/10.3390/ma16165710
Chicago/Turabian StyleGaur, Akshay, Chirag Porwal, Imed Boukhris, Vishal Singh Chauhan, and Rahul Vaish. 2023. "Review on Multicatalytic Behavior of Ba0.85Ca0.15Ti0.9Zr0.1O3 Ceramic" Materials 16, no. 16: 5710. https://doi.org/10.3390/ma16165710
APA StyleGaur, A., Porwal, C., Boukhris, I., Chauhan, V. S., & Vaish, R. (2023). Review on Multicatalytic Behavior of Ba0.85Ca0.15Ti0.9Zr0.1O3 Ceramic. Materials, 16(16), 5710. https://doi.org/10.3390/ma16165710