Microstructure, Mechanical Properties, In Vitro Biodegradability, and Biocompatibility of Mg-Zn/HA Composites for Biomedical Implant Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Mg-Zn/HA Composites
2.2. Characterization of Mg-Zn/HA Composites
2.3. Immersion Tests
2.4. Cell Culture
2.5. Alkaline Phosphatase (ALP) Activity
2.6. Statistical Analysis
3. Results
3.1. Microstructure (XRD/SEM/EDS/CT)
3.2. Mechanical Properties (Hardness/Compressive Strength/Elastic Modulus/Immersion Time Dependence)
3.3. In Vitro Biodegradation (Weight Loss/H2 Evolution/pH)
3.4. Biocompatibility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhi, P.; Liu, L.; Chang, J.; Liu, C.; Zhang, Q.; Zhou, J.; Liu, Z.; Fan, Y. Advances in the Study of Magnesium Alloys and Their Use in Bone Implant Material. Metals 2022, 12, 1500. [Google Scholar] [CrossRef]
- He, M.; Chen, L.; Yin, M.; Xu, S.; Liang, Z. Review on magnesium and magnesium-based alloys as biomaterials for bone immobilization. J. Mater. Res. Technol. 2023, 23, 4396–4419. [Google Scholar] [CrossRef]
- Agarwal, S.; Curtin, J.; Duffy, B.; Jaiswal, S. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 68, 948–963. [Google Scholar] [CrossRef] [PubMed]
- Nasr Azadani, M.; Zahedi, A.; Bowoto, O.K.; Oladapo, B.I. A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog. Biomater. 2022, 11, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Globig, P.; Willumeit-Romer, R.; Martini, F.; Mazzoni, E.; Luthringer-Feyerabend, B.J.C. Slow degrading Mg-based materials induce tumor cell dormancy on an osteosarcoma-fibroblast coculture model. Bioact. Mater. 2022, 16, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ren, Z.; Xu, Y.; Pang, S.; Zhao, X.; Zhao, Y. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review. Scanning 2018, 2018, 9216314. [Google Scholar] [CrossRef] [PubMed]
- Rahim, S.A.; Joseph, M.A.; Sampath Kumar, T.S.; Hanas, T. Recent Progress in Surface Modification of Mg Alloys for Biodegradable Orthopedic Applications. Front. Mater. 2022, 9, 848980. [Google Scholar] [CrossRef]
- Yang, H.; Xia, K.; Wang, T.; Niu, J.; Song, Y.; Xiong, Z.; Zheng, K.; Wei, S.; Lu, W. Growth, in vitro biodegradation and cytocompatibility properties of nano-hydroxyapatite coatings on biodegradable magnesium alloys. J. Alloys Compd. 2016, 672, 366–373. [Google Scholar] [CrossRef]
- Espiritu, J.; Sefa, S.; Cwieka, H.; Greving, I.; Flenner, S.; Willumeit-Romer, R.; Seitz, J.M.; Zeller-Plumhoff, B. Detailing the influence of PEO-coated biodegradable Mg-based implants on the lacuno-canalicular network in sheep bone: A pilot study. Bioact. Mater. 2023, 26, 14–23. [Google Scholar] [CrossRef]
- Jian, S.Y.; Aktug, S.L.; Huang, H.T.; Ho, C.J.; Lin, S.Y.; Chen, C.H.; Wang, M.W.; Tseng, C.C. The Potential of Calcium/Phosphate Containing MAO Implanted in Bone Tissue Regeneration and Biological Characteristics. Int. J. Mol. Sci. 2021, 22, 4706. [Google Scholar] [CrossRef]
- Moloodi, A.; Toraby, H.; Kahrobaee, S.; Razavi, M.K.; Salehi, A. Evaluation of fluorohydroxyapatite/strontium coating on titanium implants fabricated by hydrothermal treatment. Prog. Biomater. 2021, 10, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhong, J.; Hou, R.; Hu, X.; Chen, Y.; Weng, H.; Zhang, Z.; Liu, B.; Yang, S.; Peng, Z. Polymer bilayer-Micro arc oxidation surface coating on pure magnesium for bone implantation. J. Orthop. Translat. 2023, 40, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Nassif, N.; Ghayad, I. Corrosion Protection and Surface Treatment of Magnesium Alloys Used for Orthopedic Applications. Adv. Mater. Sci. Eng. 2013, 2013, 532896. [Google Scholar] [CrossRef]
- Dezfuli, S.N.; Huan, Z.; Mol, A.; Leeflang, S.; Chang, J.; Zhou, J. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 79, 647–660. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Wang, L.; Hoche, D.; Lamaka, S.V.; Wang, C.; Snihirova, D.; Jin, Y.; Zhang, Y.; Zheludkevich, M.L. Approaching “stainless magnesium” by Ca micro-alloying. Mater. Horiz. 2021, 8, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Liu, M.; Wang, J.; Sun, Y.; Li, W.; Zhu, S.; Wang, L.; Guan, S. Microstructure and texture evolution of fine-grained Mg-Zn-Y-Nd alloy micro-tubes for biodegradable vascular stents processed by hot extrusion and rapid cooling. J. Magnes. Alloys 2020, 8, 873–882. [Google Scholar] [CrossRef]
- Öğüt, S.; Kaya, H.; Kentli, A. Comparison of the Effect of Equal Channel Angular Pressing, Expansion Equal Channel Angular Pressing, and Hybrid Equal Channel Angular Pressing on Mechanical Properties of AZ31 Mg Alloy. J. Mater. Eng. Perform. 2021, 31, 3341–3353. [Google Scholar] [CrossRef]
- Sevik, H.; Ozarslan, S.; Dieringa, H. Assessment of the Mechanical and Corrosion Properties of Mg-1Zn-0.6Ca/Diamond Nanocomposites for Biomedical Applications. Nanomaterials 2022, 12, 4399. [Google Scholar] [CrossRef]
- Tang, M.; Yan, Y.; OuYang, J.; Yu, K.; Liu, C.; Zhou, X.; Wang, Z.; Deng, Y.; Shuai, C. Research on corrosion behavior and biocompatibility of a porous Mg-3%Zn/5%β-Ca3(PO4)2 composite scaffold for bone tissue engineering. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800019857064. [Google Scholar] [CrossRef]
- Abazari, S.; Shamsipur, A.; Bakhsheshi-Rad, H.R.; Ismail, A.F.; Sharif, S.; Razzaghi, M.; Ramakrishna, S.; Berto, F. Carbon Nanotubes (CNTs)-Reinforced Magnesium-Based Matrix Composites: A Comprehensive Review. Materials 2020, 13, 4421. [Google Scholar] [CrossRef]
- Kasaeian-Naeini, M.; Sedighi, M.; Hashemi, R.; Delavar, H. Microstructure, mechanical properties and fracture toughness of ECAPed magnesium matrix composite reinforced with hydroxyapatite ceramic particulates for bioabsorbable implants. Ceram. Int. 2023, 49, 17074–17090. [Google Scholar] [CrossRef]
- Nirala, A.; Soren, S.; Garg, R.; Kumar, R.; Shrivastava, A.K.; Kumar, N.; Prasad, H.; Singh, D.B.; Yadav, J.K. Study of biodegradable magnesium metal matrix composite A review. Mater. Today Proc. 2021, 46, 6592–6595. [Google Scholar] [CrossRef]
- Kumar, K.; Das, A.; Prasad, S.B. Recent developments in biodegradable magnesium matrix composites for orthopaedic applications: A review based on biodegradability, mechanical and biocompatibility perspective. Mater. Today Proc. 2021, 44, 2038–2042. [Google Scholar] [CrossRef]
- Husak, Y.; Solodovnyk, O.; Yanovska, A.; Kozik, Y.; Liubchak, I.; Ivchenko, V.; Mishchenko, O.; Zinchenko, Y.; Kuznetsov, V.; Pogorielov, M. Degradation and In Vivo Response of Hydroxyapatite-Coated Mg Alloy. Coatings 2018, 8, 375. [Google Scholar] [CrossRef]
- Panda, S.; Biswas, C.K.; Paul, S. A comprehensive review on the preparation and application of calcium hydroxyapatite: A special focus on atomic doping methods for bone tissue engineering. Ceram. Int. 2021, 47, 28122–28144. [Google Scholar] [CrossRef]
- Gu, X.N.; Wang, X.; Li, N.; Li, L.; Zheng, Y.F.; Miao, X. Microstructure and characteristics of the metal-ceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 99, 127–134. [Google Scholar] [CrossRef]
- Ye, X.; Chen, M.; Yang, M.; Wei, J.; Liu, D. In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg-Zn-Zr composites. J. Mater. Sci. Mater. Med. 2010, 21, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, G.; Xu, Y.; Xu, Z.; Gang, M.; Sun, G.; Zhang, Z.; Yang, X.; Yu, Z.; Lian, J.; et al. The microstructure, mechanical properties, corrosion performance and biocompatibility of hydroxyapatite reinforced ZK61 magnesium-matrix biological composite. J. Mech. Behav. Biomed. Mater. 2021, 123, 104759. [Google Scholar] [CrossRef]
- Moradi, E.; Ebrahimian-Hosseinabadi, M.; Khodaei, M.; Toghyani, S. Magnesium/nano-hydroxyapatite porous biodegradable composite for biomedical applications. Mater. Res. Express 2019, 6, 075408. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Zhao, C.; Li, J.; Song, Y.; Xie, C.; Tao, H.; Zhang, Y.; He, Y.; Jiang, Y.; et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater. 2010, 6, 626–640. [Google Scholar] [CrossRef]
- Hassan, S.F. Designing heterogeneous microstructured superior strength-ductility magnesium by blend-press-sinter powder metallurgy process. Int. J. Adv. Manuf. Technol. 2021, 117, 1547–1555. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Zhong, B.; Wei, D.; Jiang, X. Estimation of fatigue parameters in total strain life equation for powder metallurgy superalloy FGH96 and other metallic materials. Int. J. Fatigue 2019, 122, 116–124. [Google Scholar] [CrossRef]
- Březina, M.; Hasoňová, M.; Fintová, S.; Doležal, P.; Rednyk, A.; Wasserbauer, J. Mechanical and structural properties of bulk magnesium materials prepared via spark plasma sintering. Mater. Today Commun. 2021, 28, 102569. [Google Scholar] [CrossRef]
- Li, B.-K.; Miao, Q.; Li, M.; Zhang, X.; Ding, W.-F. An investigation on machined surface quality and tool wear during creep feed grinding of powder metallurgy nickel-based superalloy FGH96 with alumina abrasive wheels. Adv. Manuf. 2020, 8, 160–176. [Google Scholar] [CrossRef]
- Zhang, L.; Lyu, S.; You, C.; Zhao, J.; Chen, M. Elevating the mechanical properties and corrosion resistance of AZ91 alloy by adding CaO and Al element. J. Mater. Sci. 2022, 57, 20017–20032. [Google Scholar] [CrossRef]
- Shahin, M.; Wen, C.; Munir, K.; Li, Y. Mechanical and corrosion properties of graphene nanoplatelet–reinforced Mg–Zr and Mg–Zr–Zn matrix nanocomposites for biomedical applications. J. Magnes. Alloys 2022, 10, 458–477. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, C.; Wu, C.; Wu, Y.; Dai, X.; Jin, W.; Guo, B.; Song, M.; Li, W.; Yu, Z. Investigating the combined effects of wide stacking faults and grain size on the mechanical properties and corrosion resistance of high-purity Mg. J. Alloys Compd. 2022, 927, 167018. [Google Scholar] [CrossRef]
- Bahador, A.; Umeda, J.; Hamzah, E.; Yusof, F.; Li, X.; Kondoh, K. Synergistic strengthening mechanisms of copper matrix composites with TiO2 nanoparticles. Mater. Sci. Eng. A 2020, 772, 138797. [Google Scholar] [CrossRef]
- Xiong, G.; Nie, Y.; Ji, D.; Li, J.; Li, C.; Li, W.; Zhu, Y.; Luo, H.; Wan, Y. Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering. Curr. Appl. Phys. 2016, 16, 830–836. [Google Scholar] [CrossRef]
- Sharma, A.; Fujii, H.; Paul, J. Influence of reinforcement incorporation approach on mechanical and tribological properties of AA6061- CNT nanocomposite fabricated via FSP. J. Manuf. Process. 2020, 59, 604–620. [Google Scholar] [CrossRef]
- Wang, J.; Bao, Z.; Wu, C.; Zhang, S.; Wang, N.; Wang, Q.; Yi, Z. Progress in partially degradable titanium-magnesium composites used as biomedical implants. Front. Bioeng. Biotechnol. 2022, 10, 996195. [Google Scholar] [CrossRef] [PubMed]
- Moaref, R.; Shahini, M.H.; Eivaz Mohammadloo, H.; Ramezanzadeh, B.; Yazdani, S. Application of sustainable polymers for reinforcing bio-corrosion protection of magnesium implants—A review. Sustain. Chem. Pharm. 2022, 29, 100780. [Google Scholar] [CrossRef]
- Saha, S.; Lestari, W.; Dini, C.; Sarian, M.N.; Hermawan, H.; Barão, V.A.R.; Sukotjo, C.; Takoudis, C. Corrosion in Mg-alloy biomedical implants—The strategies to reduce the impact of the corrosion inflammatory reaction and microbial activity. J. Magnes. Alloys 2022, 10, 3306–3326. [Google Scholar] [CrossRef]
- Ho, Y.H.; Joshi, S.S.; Wu, T.C.; Hung, C.M.; Ho, N.J.; Dahotre, N.B. In-Vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 109, 110632. [Google Scholar] [CrossRef] [PubMed]
- Su, J.L.; Teng, J.; Xu, Z.L.; Li, Y. Effects of hydroxyapatite content on mechanical properties and in-vitro corrosion behavior of ZK60/HA composites. Int. J. Mater. Res. 2020, 111, 621–631. [Google Scholar] [CrossRef]
- Song, G. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 2007, 49, 1696–1701. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Gu, X.N.; Witte, F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014, 77, 1–34. [Google Scholar] [CrossRef]
HA Content | Porosity (%) |
---|---|
0 | 3.9 |
5 | 3.5 |
10 | 3.2 |
15 | 3.0 |
20 | 3.6 |
25 | 4.2 |
HA Content | HV | Compressive Strength (MPa) | Elastic Modulus (GPA) |
---|---|---|---|
0 | 91 | 253 | 39.2 |
5 | 106 | 274 | 37.5 |
10 | 123 | 292 | 34.8 |
15 | 136 | 306 | 32.4 |
20 | 126 | 295 | 31.3 |
25 | 115 | 280 | 29.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Zhang, Y.; Wang, T. Microstructure, Mechanical Properties, In Vitro Biodegradability, and Biocompatibility of Mg-Zn/HA Composites for Biomedical Implant Applications. Materials 2023, 16, 5669. https://doi.org/10.3390/ma16165669
Lu W, Zhang Y, Wang T. Microstructure, Mechanical Properties, In Vitro Biodegradability, and Biocompatibility of Mg-Zn/HA Composites for Biomedical Implant Applications. Materials. 2023; 16(16):5669. https://doi.org/10.3390/ma16165669
Chicago/Turabian StyleLu, Wei, Yinling Zhang, and Taolei Wang. 2023. "Microstructure, Mechanical Properties, In Vitro Biodegradability, and Biocompatibility of Mg-Zn/HA Composites for Biomedical Implant Applications" Materials 16, no. 16: 5669. https://doi.org/10.3390/ma16165669
APA StyleLu, W., Zhang, Y., & Wang, T. (2023). Microstructure, Mechanical Properties, In Vitro Biodegradability, and Biocompatibility of Mg-Zn/HA Composites for Biomedical Implant Applications. Materials, 16(16), 5669. https://doi.org/10.3390/ma16165669