CO2 Adsorption Behaviors of Biomass-Based Activated Carbons Prepared by a Microwave/Steam Activation Technique for Molecular Sieve
Abstract
:1. Introduction
2. Experimental Methods
2.1. Preparation of Activated Carbon
2.2. Characterization
2.3. CO2 and H2 Adsorption Behaviors
3. Results and Discussion
3.1. Surface Morphology and Chemical Composition
3.2. Textural Properties and Structure
3.3. Adsorption Behaviors and Correlation
3.4. Fitting of CO2 Adsorption Isotherms
3.5. Comparison of CO2 Capture Capacity of Biomass Activated Carbon
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samanta, A.; Zhao, A.; Shimizu, G.K.H.; Sarkar, P.; Gupta, R. Post-Combustion CO2 Capture Using Solid Sorbents: A Review. Ind. Eng. Chem. Res. 2011, 51, 1438–1463. [Google Scholar] [CrossRef]
- Iglina, T.; Iglin, P.; Pashchenko, D. Industrial CO2 Capture by Algae: A Review and Recent Advances. Sustainability 2022, 14, 3801. [Google Scholar] [CrossRef]
- Abbasi, F.; Riaz, K. CO2 Emissions and Financial Development in an Emerging Economy: An Augmented VAR Approach. Energy Policy 2016, 90, 102–114. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Z.; Chen, D.; Zhao, S.; Zhou, F.; Cao, X.; Fang, K. Growth Decline of Pinus Massoniana in Response to Warming Induced Drought and Increasing Intrinsic Water Use Efficiency in Humid Subtropical China. Dendrochronologia 2019, 57, 125609. [Google Scholar] [CrossRef]
- Khandekar, M.L. Are Extreme Weather Events on the Rise? Energy Environ. 2013, 24, 537–549. [Google Scholar] [CrossRef]
- Norby, R.J.; Luo, Y. Evaluating Ecosystem Responses to Rising Atmospheric CO2 and Global Warming in a Multi-factor World. New Phytol. 2004, 162, 281–293. [Google Scholar] [CrossRef]
- Zhang, Y.; Gentine, P.; Luo, X.; Lian, X.; Liu, Y.; Zhou, S.; Michalak, A.M.; Sun, W.; Fisher, J.B.; Piao, S.; et al. Increasing Sensitivity of Dryland Vegetation Greenness to Precipitation Due to Rising Atmospheric CO2. Nat. Commun. 2022, 13, 4875. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.Y.; Ngu, L.H.; Hashim, S.S.; Chew, J.J.; Sunarso, J. Review of Oil Palm-Derived Activated Carbon for CO2 Capture. Carbon Lett. 2021, 31, 201–252. [Google Scholar] [CrossRef]
- Dutcher, B.; Fan, M.; Russell, A.G. Amine-Based CO2 Capture Technology Development from the Beginning of 2013—A Review. ACS Appl. Mater. Interfaces 2015, 7, 2137–2148. [Google Scholar] [CrossRef]
- Hu, J.; Galvita, V.; Poelman, H.; Marin, G. Advanced Chemical Looping Materials for CO2 Utilization: A Review. Materials 2018, 11, 1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjostrom, S.; Krutka, H. Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture. Fuel 2010, 89, 1298–1306. [Google Scholar] [CrossRef]
- Cruz, O.F., Jr.; Campello-Gómez, I.; Casco, M.E.; Serafin, J.; Silvestre-Albero, J.; Martínez-Escandell, M.; Hotza, D.; Rambo, C.R. Enhanced CO2 Capture by Cupuassu Shell-Derived Activated Carbon with High Microporous Volume. Carbon Lett. 2022, 33, 727–735. [Google Scholar] [CrossRef]
- Rasool Abid, H.; Keshavarz, A.; Lercher, J.; Iglauer, S. Promising Material for Large-Scale H2 Storage and Efficient H2-CO2 Separation. Sep. Purif. 2022, 298, 121542. [Google Scholar] [CrossRef]
- Mendes, A.M.M.; Costa, C.A.V.; Rodrigues, A.E. Oxygen Separation from Air by PSA: Modelling and Experimental Results. Sep. Purif. 2001, 24, 173–188. [Google Scholar] [CrossRef]
- Tan, J.S.; Ani, F.N. Carbon Molecular Sieves Produced from Oil Palm Shell for Air Separation. Sep. Purif. 2004, 35, 47–54. [Google Scholar] [CrossRef]
- Shamsudin, I.K.; Abdullah, A.; Idris, I.; Gobi, S.; Othman, M.R. Hydrogen Purification from Binary Syngas by PSA with Pressure Equalization Using Microporous Palm Kernel Shell Activated Carbon. Fuel 2019, 253, 722–730. [Google Scholar] [CrossRef]
- Brea, P.; Delgado, J.A.; Águeda, V.I.; Gutiérrez, P.; Uguina, M.A. Multicomponent Adsorption of H2, CH4, CO and CO2 in Zeolites NaX, CaX and MgX. Evaluation of Performance in PSA Cycles for Hydrogen Purification. Microporous Mesoporous Mater. 2019, 286, 187–198. [Google Scholar] [CrossRef]
- Ko, D.; Siriwardane, R.; Biegler, L.T. Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration. Ind. Eng. Chem. Res. 2002, 42, 339–348. [Google Scholar] [CrossRef]
- Raganati, F.; Miccio, F.; Ammendola, P. Adsorption of Carbon Dioxide for Post-Combustion Capture: A Review. Energy Fuels 2021, 35, 12845–12868. [Google Scholar] [CrossRef]
- Plaza, M.G.; García, S.; Rubiera, F.; Pis, J.J.; Pevida, C. Post-Combustion CO2 Capture with a Commercial Activated Carbon: Comparison of Different Regeneration Strategies. J. Chem. Eng. 2010, 163, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Ammendola, P.; Raganati, F.; Chirone, R. CO2 Adsorption on a Fine Activated Carbon in a Sound Assisted Fluidized Bed: Thermodynamics and Kinetics. J. Chem. Eng. 2017, 322, 302–313. [Google Scholar] [CrossRef]
- Younas, M.; Rezakazemi, M.; Daud, M.; Wazir, M.B.; Ahmad, S.; Ullah, N.; Inamuddin; Ramakrishna, S. Recent Progress and Remaining Challenges in Post-Combustion CO2 Capture Using Metal-Organic Frameworks (MOFs). Prog. Energy Combust. Sci. 2020, 80, 100849. [Google Scholar] [CrossRef]
- Mason, J.A.; Sumida, K.; Herm, Z.R.; Krishna, R.; Long, J.R. Evaluating Metal–Organic Frameworks for Post-Combustion Carbon Dioxide Capture via Temperature Swing Adsorption. Energy Environ. Sci. 2011, 4, 3030–3040. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Park, S.-J. Determination of the Optimal Pore Size for Improved CO2 Adsorption in Activated Carbon Fibers. J. Colloid Interface Sci. 2013, 389, 230–235. [Google Scholar] [CrossRef]
- Jagiello, J.; Thommes, M. Comparison of DFT Characterization Methods Based on N2, Ar, CO2, and H2 Adsorption Applied to Carbons with Various Pore Size Distributions. Carbon 2004, 42, 1227–1232. [Google Scholar] [CrossRef]
- Kang, S.-H.; Lee, H.-M.; Kim, K.-W.; Kim, B.-J. Preparation and Characterization of Polyethylene-Based Activated Carbon Fibers Stabilized at Low Temperatures. J. Ind. Eng. Chem. 2023, 121, 401–408. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kim, B.-J. Surface-Modified Activated Carbon Fibers by a Facile Microwave Technique for Enhancing Hydrocarbon Adsorption. Environments 2023, 10, 52. [Google Scholar] [CrossRef]
- Karrab, A.; Bensimon, R.; Muller, D.; Bastide, S.; Cachet-Vivier, C.; Ammar, S. Photoelectrochemical and Electrochemical Urea Oxidation with Microwave-Assisted Synthesized Co-Fe2O3@NiO Core–Shell Nanocomposites. Carbon Lett. 2022, 32, 999–1015. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Lee, H.-M.; Kim, B.-J. Facile Microwave Treatment of Activated Carbons and Its Effects on Hydrocarbon Adsorption/Desorption Behaviors. Carbon Lett. 2023, 33, 1105–1114. [Google Scholar] [CrossRef]
- Biscoe, J.; Warren, B.E. An X-ray Study of Carbon Black. J. Appl. Clin. Med. Phys. 1942, 13, 364–371. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Lippens, B. Studies on Pore Systems in Catalysts: V. The t Method. J. Catal. 1965, 4, 319–323. [Google Scholar] [CrossRef]
- Lastoskie, C.; Gubbins, K.E.; Quirke, N. Pore Size Distribution Analysis of Microporous Carbons: A Density Functional Theory Approach. J. Phys. Chem. 1993, 97, 4786–4796. [Google Scholar] [CrossRef]
- Olivier, J.P.; Conklin, W.B.; Szombathely, M.v. Determination of Pore Size Distribution from Density Functional Theory: A Comparison of Nitrogen and Argon Results. Stud. Surf. Sci. Catal. 1994, 87, 81–89. [Google Scholar] [CrossRef]
- Nabais, J.M.V.; Nunes, P.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L.; García, A.M.; Díaz-Díez, M.A. Production of Activated Carbons from Coffee Endocarp by CO2 and Steam Activation. Fuel Process. Technol. 2008, 89, 262–268. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Lee, H.-M.; Heo, Y.-J.; An, K.-H.; Jung, S.-C.; Chung, D.C.; Park, S.-J.; Kim, B.-J. A Study on Optimal Pore Range for High Pressure Hydrogen Storage Behaviors by Porous Hard Carbon Materials Prepared from a Polymeric Precursor. Int. J. Hydrogen Energy 2018, 43, 5894–5902. [Google Scholar] [CrossRef]
- Lee, H.-M.; Baek, J.; An, K.-H.; Park, S.-J.; Park, Y.-K.; Kim, B.-J. Effects of Pore Structure on n-Butane Adsorption Characteristics of Polymer-Based Activated Carbon. Ind. Eng. Chem. 2018, 58, 736–741. [Google Scholar] [CrossRef]
- Kim, J.-H.; Jung, S.-C.; Lee, H.-M.; Kim, B.-J. Comparison of Pore Structures of Cellulose-Based Activated Carbon Fibers and Their Applications for Electrode Materials. Int. J. Mol. Sci. 2022, 23, 3680. [Google Scholar] [CrossRef]
- Lee, H.-M.; Kwac, L.-K.; An, K.-H.; Park, S.-J.; Kim, B.-J. Electrochemical Behavior of Pitch-Based Activated Carbon Fibers for Electrochemical Capacitors. Energy Convers. Manag. 2016, 125, 347–352. [Google Scholar] [CrossRef]
- Casco, M.E.; Martínez-Escandell, M.; Silvestre-Albero, J.; Rodríguez-Reinoso, F. Effect of the Porous Structure in Carbon Materials for CO2 Capture at Atmospheric and High-Pressure. Carbon 2014, 67, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Richter, E.; Wilfried, S.; Myers, A.L. Effect of Adsorption Equation on Prediction of Multicomponent Adsorption Equilibria by the Ideal Adsorbed Solution Theory. Chem. Eng. Sci. 1989, 44, 1609–1616. [Google Scholar] [CrossRef]
- Ghaemi, A.; Torab-Mostaedi, M.; Ghannadi-Maragheh, M. Characterizations of Strontium(II) and Barium(II) Adsorption from Aqueous Solutions Using Dolomite Powder. J. Hazard. Mater. 2011, 190, 916–921. [Google Scholar] [CrossRef]
- Manjare, S.; Ghoshal, A. Adsorption Equilibrium Studies for Ethyl Acetate Vapor and E-Merck 13X Molecular Sieve System. Sep. Purif. Technol. 2006, 51, 118–125. [Google Scholar] [CrossRef]
- Rashidi, N.A.; Yusup, S.; Borhan, A.; Loong, L.H. Experimental and Modelling Studies of Carbon Dioxide Adsorption by Porous Biomass Derived Activated Carbon. Clean. Technol. Environ. Policy 2014, 16, 1353–1361. [Google Scholar] [CrossRef]
- González, A.S.; Plaza, M.G.; Rubiera, F.; Pevida, C. Sustainable Biomass-Based Carbon Adsorbents for Post-Combustion CO2 Capture. J. Chem. Eng. 2013, 230, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Plaza, M.G.; González, A.S.; Pevida, C.; Pis, J.J.; Rubiera, F. Valorisation of Spent Coffee Grounds as CO2 Adsorbents for Postcombustion Capture Applications. Appl. Energy 2012, 99, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Plaza, M.G.; González, A.S.; Pis, J.J.; Rubiera, F.; Pevida, C. Production of Microporous Biochars by Single-Step Oxidation: Effect of Activation Conditions on CO2 Capture. Appl. Energy 2014, 114, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Serafin, J.; Ouzzine, M.; Cruz Junior, O.F.; Sreńscek-Nazzal, J. Preparation of Low-Cost Activated Carbons from Amazonian Nutshells for CO2 Storage. Biomass Bioenergy 2021, 144, 105925. [Google Scholar] [CrossRef]
- Singh, M.; Borkhatariya, N.; Pramanik, P.; Dutta, S.; Ghosh, S.K.; Maiti, P.; Neogi, S.; Maiti, S. Microporous Carbon Derived from Cotton Stalk Crop-Residue across Diverse Geographical Locations as Efficient and Regenerable CO2 Adsorbent with Selectivity. J. CO2 Util. 2022, 60, 101975. [Google Scholar] [CrossRef]
- Yue, L.; Xia, Q.; Wang, L.; Wang, L.; DaCosta, H.; Yang, J.; Hu, X. CO2 Adsorption at Nitrogen-Doped Carbons Prepared by K2CO3 Activation of Urea-Modified Coconut Shell. J. Colloid Interface Sci. 2018, 511, 259–267. [Google Scholar] [CrossRef]
- Rehman, A.; Park, S.-J. Comparative Study of Activation Methods to Design Nitrogen-Doped Ultra-Microporous Carbons as Efficient Contenders for CO2 Capture. J. Chem. Eng. 2018, 352, 539–548. [Google Scholar] [CrossRef]
Sample | CO2 Adsorption Amount (mmol/g) at 298 K and 1 Bar | Heating Method | Activation Time (min) | Ref. |
---|---|---|---|---|
Walnut shell | 1.9 | Microwave (physical) | 20 | Our work |
Coconut shell | 1.8 | Conventional heating (physical) | 60 | [45] |
Almond shell | 2.7 | Conventional heating (physical) | 240 | [46] |
Olive stone | 2.9 | Conventional heating (physical) | 240 | [46] |
Coffee residue | 2.4 | Conventional heating (physical) | 60 | [47] |
Almond shell | 2.1 | Conventional heating (physical) | 83 | [48] |
Olive stone | 2.0 | Conventional heating (physical) | 110 | [48] |
Amazonian waste | 3.7 | Conventional heating (Chemical) | 60 | [49] |
Cotton stalk | 2.9 | Conventional heating (Chemical) | 90 | [50] |
Coconut shell | 2.6 | Conventional heating (Chemical) | 60 | [51] |
DARCO FGD(Norit) | 0.4 (291 K, l bar) | - | - | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-Y.; Lee, B.-H.; Chung, D.-C.; Kim, B.-J. CO2 Adsorption Behaviors of Biomass-Based Activated Carbons Prepared by a Microwave/Steam Activation Technique for Molecular Sieve. Materials 2023, 16, 5625. https://doi.org/10.3390/ma16165625
Lee J-Y, Lee B-H, Chung D-C, Kim B-J. CO2 Adsorption Behaviors of Biomass-Based Activated Carbons Prepared by a Microwave/Steam Activation Technique for Molecular Sieve. Materials. 2023; 16(16):5625. https://doi.org/10.3390/ma16165625
Chicago/Turabian StyleLee, Jin-Young, Byeong-Hoon Lee, Dong-Chul Chung, and Byung-Joo Kim. 2023. "CO2 Adsorption Behaviors of Biomass-Based Activated Carbons Prepared by a Microwave/Steam Activation Technique for Molecular Sieve" Materials 16, no. 16: 5625. https://doi.org/10.3390/ma16165625
APA StyleLee, J.-Y., Lee, B.-H., Chung, D.-C., & Kim, B.-J. (2023). CO2 Adsorption Behaviors of Biomass-Based Activated Carbons Prepared by a Microwave/Steam Activation Technique for Molecular Sieve. Materials, 16(16), 5625. https://doi.org/10.3390/ma16165625