Controlling the Cooling Rate of Hydrothermal Synthesis to Enhance the Supercapacitive Properties of β-Nickel Hydroxide Electrode Materials
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
5. Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, C.; Wang, S.; Sha, S.; Lv, S.; Wang, G.; Wang, B.; Li, Q.; Yu, J.; Xua, X.; Zhang, L. Novel semiconductor materials for advanced supercapacitors. J. Mater. Chem. C 2023, 11, 4288–4317. [Google Scholar] [CrossRef]
- Conway, B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academia/Plenum: New York, NY, USA, 1999. [Google Scholar]
- Kotz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483–2498. [Google Scholar] [CrossRef]
- Zhao, X.; Sánchez, B.M.; Dobson, P.J.; Grant, P.S. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 2011, 3, 839. [Google Scholar] [CrossRef]
- Frackowiak, E. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 2007, 9, 1774. [Google Scholar] [CrossRef]
- Burke, A. R&D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta 2007, 53, 1083. [Google Scholar]
- Mendoza-Ponce, P.; John, B.; Schroeder, D.; Krautschneider, W.H. Super-capacitors for implantable medical devices with wireless power transmission. In Proceedings of the 14th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), Prague, Czech Republic, 2–5 July 2018; pp. 241–244. [Google Scholar] [CrossRef]
- Horn, M.; MacLeod, J.; Liu, M.; Webb, J.; Motta, N. Supercapacitors: A new source of power for electric cars? Econ. Anal. Policy 2019, 61, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Al-Furjan, M.S.H.; Qi, Z.H.; Shan, L.; Farrokhian, A.; Shen, X.; Kolahchi, R. Nano supercapacitors with practical application in aerospace technology: Vibration and wave propagation analysis. Aerosp. Sci. Technol. 2023, 133, 108082. [Google Scholar] [CrossRef]
- Végvári, Z. Supercapacitors and Their Military Applicability. Honvédségi Szle. 2019, 147, 38–49. [Google Scholar] [CrossRef]
- Shinde, P.A.; Olabi, A.G.; Chodankar, N.R.; Patil, S.J.; Hwang, S.K.; Abdelkareem, M.A. Realizing superior redox kinetics of metal-metal carbides/carbon coordination supported heterointerface for stable solid-state hybrid supercapacitor. Chem. Eng. J. 2023, 454, 140246. [Google Scholar] [CrossRef]
- Lu, J.L.; Li, J.E.; Wan, J.; Han, X.Y.; Ji, P.Y.; Luo, S.; Gu, M.X.; Wei, D.P.; Hu, C.G. A Facile Strategy of In-situ Anchoring of Co3O4 on N Doped Carbon Cloth for an Ultrahigh Electrochemical Performance. Nano Res. 2020, 14, 2410–2417. [Google Scholar] [CrossRef]
- Chatterjee, M.; Sain, S.; Roy, A.; Das, S.; Pradhan, S.W. Enhanced Electrochemical Properties of Co3O4 with Morphological Hierarchy for Energy Storage Application: A Comparative Study with Different Electrolytes. J. Phys. Chem. Solids 2021, 148, 109733. [Google Scholar] [CrossRef]
- Liang, R.; Du, Y.; Xiao, P.; Cheng, J.; Yuan, S.; Chen, Y.; Yuan, J.; Chen, J. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Nanomaterials 2021, 11, 1248. [Google Scholar] [CrossRef]
- Bello, A.; Makgopa, K.; Fabiane, M.; Dodoo-Ahrin, D.; Ozoemena, K.I.; Manyala, N. Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J. Mater. Sci. 2013, 48, 6707–6712. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H.M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Wang, X.; Wang, L.; Song, H.; Zhang, H.; Huang, W.; Chen, P. 3D Graphene Foam as a Monolithic and Macroporous Carbon Electrode for Electrochemical Sensing. ACS Appl. Mater. Interfaces 2012, 4, 3129–3133. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Wang, T.; Héroguel, F.; Krammer, A.; Lee, S.; Yao, L.; Schuler, A.; Luterbacher, J.S.; Yan, Y.; Hu, X. An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells. Nat. Mater. 2022, 21, 804–810. [Google Scholar] [CrossRef]
- Pei, P.; Huang, S.; Chen, D.; Li, Y.; Wu, Z.; Ren, P.; Wang, K.; Jia, X. A high-energy-density and long-stable-performance zinc-air fuel cell system. Appl. Energy 2019, 241, 124–129. [Google Scholar] [CrossRef]
- Lee, D.J.; Yu, S.-H.; Lee, H.S.; Jin, A.; Lee, J.; Lee, J.E.; Sung, Y.-E.; Hyeon, T. Facile synthesis of metal hydroxide nanoplates and their application as lithium-ion battery anodes. J. Mater. Chem. A 2017, 5, 8744–8751. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Hashmi, S.A.; Khan, M.; Choi, D.; Qurashi, A. Frontiers and recent developments on supercapacitor’s materials, design, and applications: Transport and power system applications. J. Energy Storage 2023, 58, 106104. [Google Scholar] [CrossRef]
- Shi, F.; Li, L.; Wang, X.-L.; Gua, C.-D.; Tu, J.-P. Metal oxide/hydroxide-based materials for supercapacitors. RCS Adv. 2014, 4, 41910–41921. [Google Scholar] [CrossRef]
- Naeem, S.; Patil, A.V.; Shaikh, A.V.; Shinde, U.P.; Husain, D.; Alam, M.T.; Sharma, M.; Tewari, K.; Ahmad, S.; Shah, A.A.; et al. A Review of Cobalt-Based Metal Hydroxide Electrode for Applications in Supercapacitors. Adv. Mater. Sci. Eng. 2023, 2023, 1133559. [Google Scholar] [CrossRef]
- Nilimapriyadarsini, S.; Balasubramaniam, S.; Manab, K.; Lukas, S.M.; Ananthakumar, R. Recent trends in template assisted 3D porous materials for electrochemical supercapacitors. J. Mater. Chem. A 2021, 9, 25286–25324. [Google Scholar]
- Hu, C.C.; Chen, W.C. Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon–RuOx electrodes for supercapacitors. Electrochim. Acta 2004, 49, 3469–3477. [Google Scholar] [CrossRef]
- Hu, C.C.; Chen, W.C.; Chang, K.H. How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors. J. Electrochem. Soc. 2004, 151, A281. [Google Scholar] [CrossRef]
- Hu, C.C.; Chang, K.H.; Lin, M.C.; Wu, Y.T. Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors. Nano Lett. 2006, 6, 2690–2695. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, C.; Qi, Z.; Hu, W.; Zhang, Z. Nanostructure Nickel-Based Selenides as Cathode Materials for Hybrid Battery-Supercapacitors. Front. Chem. 2021, 8, 611032. [Google Scholar] [CrossRef]
- Liuqin, L.; Rong, L.; Siyu, S.; Liang, Z.; Yifan, C.; Naili, G.; Wei, S.; Xiaohong, Z. Controllable synthesis of reduced graphene oxide/nickel hydroxide composites with different morphologies for high performance supercapacitors. J. Alloys Compd. 2006, 6, 2690–2695. [Google Scholar]
- Bai, X.L.; Gao, Y.L.; Gao, Z.Y.; Ma, J.Y.; Tong, X.L.; Sun, H.B.; Wang, J.A. Supercapacitor performance of 3D-graphene/MnO2 foam synthesized via the combination of chemical vapor deposition with hydrothermal method. Appl. Phys. Lett. 2020, 117, 18. [Google Scholar] [CrossRef]
- Qi, J.; Xu, P.; Lv, Z.; Liu, X.; Wen, A. Effect of crystallinity on the electrochemical performance of nanometer Al-stabilized α-nickel hydroxide. J. Alloys Compd. 2008, 462, 164–169. [Google Scholar] [CrossRef]
- Hsiao, Y.-C.; Liao, C.-H.; Hsu, C.-S.; Yougbaré, S.; Lin, L.-Y.; Wu, Y.-F. Novel synthesis of manganese cobalt layered double hydroxide and sulfur-doped nickel cobalt layered double hydroxide composite as efficient active material of battery supercapacitor hybrids. J. Energy Storage 2023, 57, 106171. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Guo, X.; Li, R.; Peng, Z.; Zhang, W.; Zheng, Y.; Xie, H.; Zhang, Y.; Zhao, Y. High-Performance Nickel Cobalt Hydroxide Nanosheets/Graphene/Ni foam Composite Electrode for Supercapacitor Applications. J. Electroanal. Chem. 2021, 897, 115543. [Google Scholar] [CrossRef]
- Wang, H.; Xu, X.; Wang, C.; Neville, A.; Hua, Y. Fundamental Insight into the Degradation Mechanism of an rGO-Fe3O4 Supercapacitor and Improving Its Capacity Behavior via Adding an Electrolyte Additive. Energy Fuels 2021, 35, 8406–8416. [Google Scholar] [CrossRef]
- Erdemutu, E.; Bai, C.; Ding, L. Electrospun Ni-Ni(OH)2/Carbon Nanofibers as Flexible Binder-Free Supercapacitor Electrode with Enhanced Specific Capacitance. J. Electron. Mater. 2020, 49, 7211–7218. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, C.; Wang, Y.; Hong, Y.; Wu, H.; Wang, K.; Niu, D.; Zhang, C.; Zhang, Q. Cu/CuxO@C nanocomposites as efficient electrodes for high-performance supercapacitor devices. Dalton Trans 2022, 51, 14551–14556. [Google Scholar] [CrossRef] [PubMed]
- Kasap, S.; Kaya, I.I.; Repp, S.; Erdem, E. Superbat: Battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects. Nanoscale Adv. 2019, 1, 2586–2597. [Google Scholar] [CrossRef]
- Samuel, E.; Joshi, B.; Kim, Y.I.; Aldalbahi, A.; Rahaman, M.; Yoon, S.S. ZnO/MnOx Nanoflowers for High-Performance Supercapacitor Electrodes. ACS Sustain. Chem. Eng. 2020, 8, 3697–3708. [Google Scholar] [CrossRef]
- Yi, X.; Sun, H.; Robertson, N.; Kirk, C. Nanoflower Ni(OH)2 grown in situ on Ni foam for high-performance supercapacitor electrodematerials. Sustain. Energy Fuels 2021, 5, 5236–5246. [Google Scholar] [CrossRef]
- Kim, B.K.; Chabot, V.; Yu, A. Carbon nanomaterials supported Ni(OH)2/NiO hybrid flower structure for supercapacitor. Electrochim. Acta 2013, 109, 370–380. [Google Scholar] [CrossRef]
- Lakshmi, K.C.S.; Vedhanarayanan, B. High-Performance Supercapacitors: A Comprehensive Review on Paradigm Shift of Conventional Energy Storage Devices. Batteries 2023, 9, 202. [Google Scholar] [CrossRef]
- Eftekhari, A. Energy efficiency: A critically important but neglected factor in battery research. Sustain. Energy Fuels 2017, 1, 2053–2060. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, F.; Yang, L.; Gao, L.; Burke, A.F. A measurement method for determination of dc internal resistance of batteries and supercapacitors. Electrochem. Commun. 2010, 12, 242–245. [Google Scholar] [CrossRef]
- Negroiu, R.; Svasta, P.; Pirvu, C.; Vasile, A.; Marghescu, C. Electrochemical impedance spectroscopy for different types of supercapacitors. In Proceedings of the 2017 40th International Spring Seminar on Electronics Technology (ISSE), Sofia, Bulgaria, 10–14 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Wiston, B.R.; Ashok, M. Electrochemical performance of hydrothermally synthesized flower-like α-nickel hydroxide. Vacuum 2018, 160, 12–17. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Hu, Z.-A.; Wu, H.-Y. Preparation and electrochemical performance of alpha-nickel hydroxide nanowire. Mater. Chem. Phys. 2011, 126, 580–583. [Google Scholar] [CrossRef]
- Kuo, T.-R.; Yen, S.-C.; Kubendhiran, S.; Yougbaré, S.; Lin, L.-Y.; Wu, Y.-F. Tailoring morphology of pure terephthalic acid induced beta nickel hydroxide using ultrasonication and alkalization for efficient energy storage. J. Energy Storage 2022, 56, 106117. [Google Scholar] [CrossRef]
- Xie, M.; Xu, Z.; Duan, S.; Tian, Z.; Zhang, Y.; Xiang, K.; Lin, M.; Guo, X.; Ding, W. Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications. Nano Res. 2018, 11, 216–224. [Google Scholar] [CrossRef]
- Attia, S.Y.; Bedir, A.G.; Barakat, Y.F.; Mohamed, S.G. A two-dimensional nickel-doped bismuth-layered double hydroxide structure as a bifunctional efficient electrode material for symmetric supercapacitors. Sustain. Mater. Technol. 2023, 36, e00595. [Google Scholar] [CrossRef]
- Berrabah, S.E.; Benchettara, A.; Smaili, F.; Benchettara, A.; Mahieddine, A. High performance hybrid supercapacitor based on electrochemical deposed of nickel hydroxide on zinc oxide supported by graphite electrode. J. Alloys Compd. 2023, 942, 169112. [Google Scholar] [CrossRef]
- Emin, A.; Li, J.; Dong, Y.; Fu, Y.; He, D.; Li, Y. Facilely prepared nickel-manganese layered double hydroxide-supported manganese dioxide on nickel foam for aqueous asymmetric supercapacitors with high performance. J. Energy Storage 2023, 65, 107340. [Google Scholar] [CrossRef]
- Mollajafari, M. An efficient lightweight algorithm for scheduling tasks onto dynamically reconfigurable hardware using graph-oriented simulated annealing. Neural Comput. Appl. 2023, 35, 18035–18057. [Google Scholar] [CrossRef]
Electrode Material | Preparation Method | GCD Current Density (A/g) | Specific Capacitance Value (F/g) | Reference in This Work |
---|---|---|---|---|
MnO2/graphene | CVD, hydrothermal | 333.4 | [30] | |
Hydrothermal | 1581.3 | [32] | ||
CVD, hydrothermal | 2023.5 | [33] | ||
Hydrothermal (with rGO) | 186.6 | [34] | ||
Electrospun | 1 | 763 | [35] | |
Thermal reduction and oxidation with MOF | 3 | 400 | [36] | |
Solid-state (SS) synthesis | 1 | 448 | [37] | |
Electrodeposition, chemical bath | 556 | [38] | ||
Ni(OH)2/graphene | CVD, hydrothermal | 3 | 539 | This work |
Sample Number | N100 | N25 | N10 |
---|---|---|---|
Energy efficiency | 73.4% | 81.2% | 90.4% |
Preparation Method | Phase of Crystalline Nickel Hydroxide | GCD Current Density(A/g) | Specific Capacitance Value (F/g) | References |
---|---|---|---|---|
Hydrothermal | 516 | [45] | ||
AAO-template-supported precipitation | 833 | [46] | ||
Ultrasonication and alkalization | 1171 | [47] | ||
Electrospun | β | 763 | [48] | |
Hydrothermal | 539 | In this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.-M.; Hong, S.-H. Controlling the Cooling Rate of Hydrothermal Synthesis to Enhance the Supercapacitive Properties of β-Nickel Hydroxide Electrode Materials. Materials 2023, 16, 5576. https://doi.org/10.3390/ma16165576
Lu Y-M, Hong S-H. Controlling the Cooling Rate of Hydrothermal Synthesis to Enhance the Supercapacitive Properties of β-Nickel Hydroxide Electrode Materials. Materials. 2023; 16(16):5576. https://doi.org/10.3390/ma16165576
Chicago/Turabian StyleLu, Yang-Ming, and Sheng-Huai Hong. 2023. "Controlling the Cooling Rate of Hydrothermal Synthesis to Enhance the Supercapacitive Properties of β-Nickel Hydroxide Electrode Materials" Materials 16, no. 16: 5576. https://doi.org/10.3390/ma16165576
APA StyleLu, Y.-M., & Hong, S.-H. (2023). Controlling the Cooling Rate of Hydrothermal Synthesis to Enhance the Supercapacitive Properties of β-Nickel Hydroxide Electrode Materials. Materials, 16(16), 5576. https://doi.org/10.3390/ma16165576