The Effect of Substitution of Mn by Pd on the Structure and Thermomagnetic Properties of the Mn1−xPdxCoGe Alloys (Where x = 0.03, 0.05, 0.07 and 0.1)
Abstract
1. Introduction
2. Sample Preparation and Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warburg, E. Magnetische untersuchugen. Ann. Phys. 1881, 13, 141. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneidner, K.A., Jr. Giant Magnetocaloric Effect in Gd5Si2Ge2. Phys. Rev. Lett. 1997, 78, 4494–4497. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneidner, K.A., Jr. Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 1999, 200, 44–56. [Google Scholar] [CrossRef]
- Botello-Zubiate, M.E.; Grijalva-Castillo, M.C.; Soto-Parra, D.; Sáenz-Hernández, R.J.; Santillán-Rodríguez, C.R.; Matutes-Aquino, J.A. Preparation of La0.7Ca0.3−xSrxMnO3 Manganites by Four Synthesis Methods and Their Influence on the Magnetic Properties and Relative Cooling Power. Materials 2019, 12, 309. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Muller, K.H.; Gutfleisch, O. Magnetocaloric effect in the LaFe11.8−xCoxSi1.2 melt-spun ribbons. J. Alloys Compd. 2008, 450, 18–21. [Google Scholar] [CrossRef]
- Gębara, P.; Pawlik, P.; Hasiak, M. Alteration of negative lattice expansion of the La(Fe,Si)13-type phase in LaFe11.14−xCo0.66NixSi1.2 alloys. J. Magn. Magn. Mater. 2017, 422, 61–65. [Google Scholar] [CrossRef]
- Law, J.Y.; Franco, V.; Ramanujan, R.V. The magnetocaloric effect of partially crystalline Fe-B-Cr-Gd alloys. J. Appl. Phys. 2012, 111, 113919. [Google Scholar] [CrossRef]
- Wang, J.T.; Wang, D.S.; Chen, C.F.; Nashima, O.; Kanomata, T.; Mizuseki, H.; Kawazoe, Y. Vacancy induced structural and magnetic transition in MnCo1−xGe. Appl. Phys. Lett. 2006, 89, 262504. [Google Scholar] [CrossRef]
- Pal, S.K.; Frommen, C.; Kumar, S.; Hauback, B.C.; Fjellvag, H.; Woodcock, T.G.; Nielsch, K.; Helgesen, G. Comparative phase transformation and magnetocaloric effect study of Co and Mn substitution by Cu in MnCoGe compounds. J. Alloys Compd. 2019, 775, 22. [Google Scholar] [CrossRef]
- Si, X.; Zhou, K.; Zhang, R.; Ma, X.; Zhang, Z.; Liu, Y. Prediction of magnetocaloric effect and spontaneous magnetization in Cu-doped MnCoGe system. Mater. Res. Express 2018, 5, 126104. [Google Scholar] [CrossRef]
- Liu, J.; Gottschall, T.; Skokov, K.P.; Moore, J.D.; Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 2012, 11, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.C.; Ge, Q.; Hu, Y.F.; Wang, L.; Liu, K.; Jiang, Q.Z.; Wang, D.H.; Hu, C.C.; Huang, H.B.; Cao, G.P.; et al. Driving higher magnetic field sensitivity of the martensitic transformation in MnCoGe ferromagnet. Appl. Phys. Lett. 2017, 111, 192406. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Tao, K.; Wang, Y.; Wu, M.; Long, Y. Giant magnetocaloric effect induced by reemergence of magnetostructural coupling in Si-doped Mn0.95CoGe compounds. Mater. Des. 2017, 114, 410–415. [Google Scholar] [CrossRef]
- Ma, S.C.; Zheng, Y.X.; Xuan, H.C.; Shen, L.J.; Cao, Q.Q.; Wang, D.H.; Zhong, Z.C.; Du, Y.W. Large room temperature magnetocaloric effect with negligible magnetic hysteresis losses in Mn1−xVxCoGe alloys. J. Magn. Magn. Mater. 2012, 324, 135–139. [Google Scholar] [CrossRef]
- Trung, N.T.; Biharie, V.; Zhang, L.; Caron, L.; Buschow, K.H.J.; Brück, E. From single- to double-first-order magnetic phase transition in magnetocaloric Mn1−xCrxCoGe compounds. Appl. Phys. Lett. 2010, 96, 162507. [Google Scholar] [CrossRef]
- Gębara, P.; Śniadecki, Z. Structure, magnetocaloric properties and thermodynamic modeling of enthalpies of formation of (Mn,X)-Co-Ge (X = Zr, Pd) alloys. J. Alloys Compd. 2019, 796, 153–159. [Google Scholar] [CrossRef]
- Ren, Q.; Hutchison, W.D.; Wang, J.; Studer, A.J.; Campbell, S.J. Magnetic and structural transitions tuned through valence electron concentration in magnetocaloric Mn(Co1−xNix)Ge. Chem. Mater. 2018, 30, 1324–1334. [Google Scholar] [CrossRef]
- Qian, F.; Zhu, Q.; Miao, X.; Fan, J.; Zhong, G.; Yang, H. Tailoring the magneto-structural coupling in Mn1−xZrxCoGe alloys. J. Mater. Sci. 2021, 56, 1472–1480. [Google Scholar] [CrossRef]
- Kutynia, K.; Gębara, P. Tuning of the structure and magnetocaloric effect of Mn1−xZrxCoGe alloys (where x = 0.03, 0.05, 0.07 and 0.1). Materials 2021, 14, 3129. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. PowderCell 2.0 for Windows. Powder Differ. 1998, 13, 256. [Google Scholar]
- Bażela, W.; Szytuła, A.; Todorović, J.; Tomkowicz, Z.; Zięba, A. Crystal and magnetic structure of NiMnGe. Phys. Status Solidi A 1976, 38, 721–729. [Google Scholar] [CrossRef]
- Johnson, V. Diffusionless orthorhombic to hexagonal transitions in ternary silicides and germanides. Inorg. Chem. 1975, 14, 1117–1120. [Google Scholar] [CrossRef]
- Gschneidner, K.A., Jr.; Mudryk, Y.; Pecharsky, V.K. On the nature of the magnetocaloric effect of the first-order magnetostructural transition. Scr. Mater. 2012, 67, 572–577. [Google Scholar] [CrossRef]
- Kaeswurm, B.V.; Franco, K.P.; Skokov, O. Gutfleisch, Assessment of the magnetocaloric effect in La,Pr(Fe,Si) under cycling. J. Magn. Magn. Mater. 2016, 406, 259–265. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneider, K.A., Jr. Magnetocaloric effect from indirect measurements: Magnetization and heat capacity. J. Appl. Phys. 1999, 86, 565–575. [Google Scholar] [CrossRef]
- Świerczek, J. Medium range ordering and some magnetic properties of amorphous Fe90Zr7B3 alloy. J. Magn. Magn. Mater. 2010, 322, 2696–2702. [Google Scholar] [CrossRef]
- Tishin, A.M.; Spichkin, Y.I. The Magnetocaloric Effect and Its Applications; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Diaz-Garcia, A.; Moreno-Ramirez, L.M.; Law, J.Y.; Albertini, F.; Fabbrici, S.; Franco, V. Characterization of thermal hysteresis in magnetocaloric NiMnIn Heusler alloys by Temperature First Order Reversal Curves (TFORC). J. Alloys Compd. 2021, 867, 159184. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, Q.; Wei, Z.; Liu, E.; Han, X.; Du, Z.; Li, L.; Xi, X.; Wang, W.; Wang, S.; et al. An efficient scheme to tailor the magnetostructural transitions by staged quenching and cyclical ageing in hexagonal martensitic alloys. Acta Mater. 2019, 174, 289–299. [Google Scholar] [CrossRef]
- Tozkoparan, O.; Yildirim, O.; Yüzüak, E.; Duman, E.; Dincer, I. Magnetostructural transition in Co-Mn-Ge systems tuned by valence electron concentration. J. Alloys Compd. 2019, 791, 208–214. [Google Scholar] [CrossRef]
- Wood, M.E.; Potter, W.H. General analysis of magnetic refrigation and its optimization using a new concept: Maximization of refrigerant capacity. Cryogenics 1985, 25, 667–683. [Google Scholar] [CrossRef]
- Pierunek, N.; Śniadecki, Z.; Marcin, J.; Skorvanek, I.; Idzikowski, B. Magnetocaloric effect of amorphous Gd65Fe10Co10Al10 × 5 (X = Al, Si, B) alloys. IEEE Trans. Magn. 2014, 50, 6971595. [Google Scholar] [CrossRef]
- Law, J.Y.; Franco, V.; Moreno-Ramírez, L.M.; Conde, A.; Karpenkov, D.Y.; Radulov, I.; Skokov, K.P.; Gutfleisch, O. A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect. Nat. Commun. 2018, 9, 2680. [Google Scholar] [CrossRef]
- Franco, V.; Conde, A.; Provenzano, V.; Shull, R.D. Scaling analysis of the magnetocaloric effect in Gd5Si2Ge1.9X\(X = Al,Cu,Ga,Mn,Fe,Co). J. Magn. Magn. Mater. 2010, 322, 218–223. [Google Scholar] [CrossRef]
- Świerczek, J. Superparamagnetic behavior and magnetic entropy change in partially crystallized Fe–Mo–Cu–B alloy. Phys. Status Solidi A 2014, 211, 1567–1576. [Google Scholar] [CrossRef]
- Moreno-Ramirez, L.M.; Law, J.Y.; Borrego, J.M.; Barcza, A.; Greneche, J.M.; Franco, V. First-order phase transition in high-performance La(Fe,Mn,Si)13H despite negligible hysteresis. J. Alloys Compd. 2023, 950, 169883. [Google Scholar] [CrossRef]
- Gębara, P.; Hasiak, M. Determination of Phase Transition and Critical Behavior of the As-Cast GdGeSi-(X) Type Alloys (Where X = Ni, Nd and Pr). Materials 2021, 14, 185. [Google Scholar] [CrossRef]
Alloy | Recognized Phases | Lattice Constant [Å] ± 0.001 | Volume Fraction [%] |
---|---|---|---|
Mn0.97Pd0.03CoGe | hex Ni2Ti-type | a = 4.073 | 93 |
c = 5.283 | |||
ort NiTiSi-type | a = 5.939 | 7 | |
b = 3.823 | |||
c = 7.053 | |||
Mn0.95Pd0.05CoGe | hex Ni2Ti-type | a = 4.075 | 34 |
c = 5.285 | |||
ort NiTiSi-type | a = 5.942 | 66 | |
b = 3.824 | |||
c = 7.055 | |||
Mn0.93Pd0.07CoGe | hex Ni2Ti-type | a = 4.079 | 52 |
c = 5.285 | |||
ort NiTiSi-type | a = 5.943 | 48 | |
b = 3.825 | |||
c = 7.056 | |||
Mn0.9Pd0.1CoGe | hex Ni2Ti-type | a = 4.081 | 45 |
c = 5.286 | |||
ort NiTiSi-type | a = 5.944 | 55 | |
b = 3.827 | |||
c = 7.058 |
Sample | Magnetic Field Change Δ(μ0H) [T] | Magnetic Entropy Change ΔSM [J (kg K)−1] | Cooling Capacity RC [J kg−1] |
---|---|---|---|
Mn0.97Pd0.03CoGe | 1 | 2.67 | 90 |
2 | 4.64 | 154 | |
3 | 6.82 | 267 | |
4 | 7.75 | 317 | |
5 | 8.88 | 402 | |
Mn0.95Pd0.05CoGe | 1 | 5.41 | 104 |
2 | 10.37 | 249 | |
3 | 15.62 | 365 | |
4 | 20.98 | 499 | |
5 | 23.99 | 646 | |
Mn0.93Pd0.07CoGe | 1 | 3.91 | 93 |
2 | 6.50 | 165 | |
3 | 9.65 | 225 | |
4 | 13.10 | 320 | |
5 | 15.63 | 463 | |
Mn0.9Pd0.1CoGe | 1 | 2.02 | 39 |
2 | 4.33 | 86 | |
3 | 6.67 | 131 | |
4 | 8.82 | 209 | |
5 | 11.09 | 238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutynia, K.; Przybył, A.; Gębara, P. The Effect of Substitution of Mn by Pd on the Structure and Thermomagnetic Properties of the Mn1−xPdxCoGe Alloys (Where x = 0.03, 0.05, 0.07 and 0.1). Materials 2023, 16, 5394. https://doi.org/10.3390/ma16155394
Kutynia K, Przybył A, Gębara P. The Effect of Substitution of Mn by Pd on the Structure and Thermomagnetic Properties of the Mn1−xPdxCoGe Alloys (Where x = 0.03, 0.05, 0.07 and 0.1). Materials. 2023; 16(15):5394. https://doi.org/10.3390/ma16155394
Chicago/Turabian StyleKutynia, Karolina, Anna Przybył, and Piotr Gębara. 2023. "The Effect of Substitution of Mn by Pd on the Structure and Thermomagnetic Properties of the Mn1−xPdxCoGe Alloys (Where x = 0.03, 0.05, 0.07 and 0.1)" Materials 16, no. 15: 5394. https://doi.org/10.3390/ma16155394
APA StyleKutynia, K., Przybył, A., & Gębara, P. (2023). The Effect of Substitution of Mn by Pd on the Structure and Thermomagnetic Properties of the Mn1−xPdxCoGe Alloys (Where x = 0.03, 0.05, 0.07 and 0.1). Materials, 16(15), 5394. https://doi.org/10.3390/ma16155394