The Preparation, Characterization, and Pressure-Influenced Dihydrogen Interactions of Tetramethylphosphonium Borohydride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanochemical Attempt at Synthesis
2.2. Synthesis of [(CH3)4P][Al(OC(CF3)3)4]
2.3. Solvent-Mediated Synthesis of [(CH3)4P]BH4
2.4. Analytical Techniques and Data Processing
3. Results and Discussion
3.1. Synthesis
3.2. Crystal Structures
3.3. Thermal Decomposition
3.4. High-Pressure Evolution of [(CH3)4P]BH4 as Probed by Raman Spectroscopy and DFT
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paskevicius, M.; Jepsen, L.H.; Schouwink, P.; Černý, R.; Ravnsbæk, D.B.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen, T.R. Metal Borohydrides and Derivatives—Synthesis, Structure and Properties. Chem. Soc. Rev. 2017, 46, 1565–1634. [Google Scholar] [CrossRef]
- Suárez-Alcántara, K.; García, J.R.T. Metal Borohydrides beyond Groups i and Ii: A Review. Materials 2021, 14, 2561. [Google Scholar] [CrossRef]
- DOE US. Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles. US Drive 2017, 1, 1–29. [Google Scholar]
- Hagemann, H.; Černý, R. Synthetic Approaches to Inorganic Borohydrides. Dalt. Trans. 2010, 39, 6006. [Google Scholar] [CrossRef]
- Jaroń, T.; Orłowski, P.A.; Wegner, W.; Fijałkowski, K.J.; Leszczyński, P.J.; Grochala, W. Hydrogen Storage Materials: Room-Temperature Wet-Chemistry Approach toward Mixed-Metal Borohydrides. Angew. Chem. Int. Ed. 2015, 54, 1236–1239. [Google Scholar] [CrossRef] [PubMed]
- Starobrat, A.; Tyszkiewicz, M.J.; Wegner, W.; Pancerz, D.; Orłowski, P.A.; Leszczyński, P.J.; Fijalkowski, K.J.; Jaroń, T.; Grochala, W. Salts of Highly Fluorinated Weakly Coordinating Anions as Versatile Precursors towards Hydrogen Storage Materials. Dalt. Trans. 2015, 44, 19469–19477. [Google Scholar] [CrossRef]
- Wegner, W.; Jaroń, T. Synthesis, Polymorphism and Thermal Decomposition Process of (N-C4H9)4NRE(BH4)4 for RE = Ho, Tm and Yb. Materials 2021, 14, 1329. [Google Scholar] [CrossRef]
- Wegner, W.; Fijalkowski, K.J. Synthesis Method of Unsolvated Organic Derivatives of Metal Borohydrides. Materials 2022, 15, 8653. [Google Scholar] [CrossRef] [PubMed]
- Raber, D.J.; Guida, W.C. Tetrabutylammonium Borohydride. Borohydride Reductions in Dichloromethane. J. Org. Chem. 1976, 41, 690–696. [Google Scholar] [CrossRef]
- Fraser, K.J.; MacFarlane, D.R. Phosphonium-Based Ionic Liquids: An Overview. Aust. J. Chem. 2009, 62, 309–321. [Google Scholar] [CrossRef]
- Rios, A.; O’Donoghue, A.M.C.; Amyes, T.L.; Richard, J.P. Formation and Stability of Organic Zwitterions—The Carbon Acid PK as of the Trimethylsulfonium and Tetramethylphosphonium Cations in Water. Can. J. Chem. 2005, 83, 1536–1542. [Google Scholar] [CrossRef]
- Saidov, B.I.; Borisov, A.P.; Makhaev, V.D.; Bojko, G.N.; Antsyshkina, A.S.; Kedrova, N.S.; Mal’tseva, N.N. Complexes of Zinc Tetrahydroborate with Tetrahydroborates of Organic Cations. Russ. J. Inorg. Chem. 1990, 35, 353–357. [Google Scholar]
- Antsyshkina, A.S.; Sadikov, G.G.; Borisov, P.; Makhaev, V.D. Complexes of Yttrium, Thulium, and Lutetium Tetrahydridoborates with Tetraphenylphosphonium Tetrahydridoborate (Ph4P)[M(BH4)4] (M = Y, Tm, Lu): Crystal Structure of (Ph4P)[Tm(BH4)4]. Russ. J. Inorg. Chem. 2001, 46, 1141–1146. [Google Scholar]
- Heal, H.G. “Onium” Base Borohydrides-II. Some Phenyl Compounds. J. Inorg. Nucl. Chem. 1961, 16, 208–212. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, J.; Kochovski, Z.; Miao, H.; Gao, Z.; Sun, J.K.; Yuan, J. Ionic Organic Cage-Encapsulated Metal Clusters for Switchable Catalysis. Cell Rep. Phys. Sci. 2021, 2, 100546. [Google Scholar] [CrossRef]
- Yang, X.; Ullah, Z.; Stoddart, J.F.; Yavuz, C.T. Porous Organic Cages. Chem. Rev. 2023, 123, 4602–4634. [Google Scholar] [CrossRef]
- Yang, X.; Xu, Q. Encapsulating Metal Nanocatalysts within Porous Organic Hosts. Trends Chem. 2020, 2, 214–226. [Google Scholar] [CrossRef]
- Raabe, I.; Wagner, K.; Guttsche, K.; Wang, M.; Grätzel, M.; Santiso-Quiñones, G.; Krossing, I. Tetraalkylammonium Salts of Weakly Coordinating Aluminates: Ionic Liquids, Materials for Electrochemical Applications and Useful Compounds for Anion Investigation. Chem.—Eur. J. 2009, 15, 1966–1976. [Google Scholar] [CrossRef]
- Malinowski, P.J.; Jaroń, T.; Domańska, M.; Slattery, J.M.; Schmitt, M.; Krossing, I. Building Blocks for the Chemistry of Perfluorinated Alkoxyaluminates [Al{OC(CF3)3}4]−: Simplified Preparation and Characterization of Li+-Cs+, Ag+, NH4+, N2H5+ and N2H7+ salts. Dalt. Trans. 2020, 49, 7766–7773. [Google Scholar] [CrossRef]
- Krossing, I.; Reisinger, A. Chemistry with Weakly-Coordinating Fluorinated Alkoxyaluminate Anions: Gas Phase Cations in Condensed Phases? Coord. Chem. Rev. 2006, 250, 2721–2744. [Google Scholar] [CrossRef]
- Agilent. CrysAlis PRO; Agilent Technologies Ltd.: Oxfordshire, UK, 2014. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Petricek, V.; Dusek, M.; Palatinus, L.; Petříček, V.; Dušek, M.; Palatinus, L.; Petrícek, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General Features. Z. Krist. 2014, 229, 345–352. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.J.; Refson, K.; Payne, M.C. First Principles Methods Using CASTEP. Z. Krist. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Tkatchenko, A.; Scheffler, M. Accurate Molecular van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102, 073005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angel, R.J.; Gonzalez-Platas, J.; Alvaro, M. EosFit7c and a Fortran Module (Library) for Equation of State Calculations. Z. Krist. 2014, 229, 405–419. [Google Scholar] [CrossRef]
- Gonzalez-Platas, J.; Alvaro, M.; Nestola, F.; Angel, R. EosFit7-GUI: A New Graphical User Interface for Equation of State Calculations, Analyses and Teaching. J. Appl. Crystallogr. 2016, 49, 1377–1382. [Google Scholar] [CrossRef]
- Ravnsbaek, D.B.; Sørensen, L.H.; Filinchuk, Y.; Besenbacher, F.; Jensen, T.R. Screening of Metal Borohydrides by Mechanochemistry and Diffraction. Angew. Chem. Int. Ed. 2012, 51, 3582–3586. [Google Scholar] [CrossRef]
- Collins, E.; June Sutor, D.; Mann, F.G. The Crystal Structure of Tetramethylarsonium Bromide. J. Chem. Soc. 1963, 4130–4145. [Google Scholar] [CrossRef]
- Burbach, G.; Dou, S.-Q.; Weiss, A. Molecular Motion in Solid [Sb(CH3)4]X, X = Cl, Br, I, PF6, and BF4. 1H, 19F NMR Second Moment and Crystal Structure. Berichte Bunsenges. Phys. Chem. 1989, 93, 1302–1309. [Google Scholar] [CrossRef]
- Assenmacher, W.; Jansen, M. Zur Kenntnis Der Ionischen Ozonide P(CH3)4O3 Und As(CH3)4O3. ZAAC—J. Inorg. Gen. Chem. 1995, 621, 431–434. [Google Scholar] [CrossRef]
- Wyckoff, R.W.G., IV. The Crystal Structure of the Tetramethyl Ammonium Halides. Z. Krist.—Cryst. Mater. 1928, 67, 91–105. [Google Scholar] [CrossRef]
- Evans, D.J.; Hughes, D.L. Structure of Tetramethylammonium Bromide: A Redetermination. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1990, 46, 1452–1454. [Google Scholar] [CrossRef]
- Jaroń, T.; Grochala, W. Tetra-Methyl-Ammonium Borohydride from Powder Data. Acta Crystallogr. Sect. E Struct. Rep. Online 2011, 67, o2171. [Google Scholar] [CrossRef]
- Jaroń, T.; Starobrat, A.; Struzhkin, V.V.; Grochala, W. Inclusion of Neon into Yttrium Borohydride Structure at Elevated Pressure—An Experimental and Theoretical Study. Eur. J. Inorg. Chem. 2020, 2020, 3846–3851. [Google Scholar] [CrossRef]
- Dalton, D.A.; Somayazulu, M.; Goncharov, A.F.; Hemley, R.J. Static Compression of Tetramethylammonium Borohydride. J. Phys. Chem. A 2011, 115, 11033–11038. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Pérez, E.J.; Núñez, R.; Viñas, C.; Sillanpää, R.; Teixidor, F. The Role of C-H⋯H-B Interactions in Establishing Rotamer Configurations in Metallabis(Dicarbollide) Systems. Eur. J. Inorg. Chem. 2010, 2010, 2385–2392. [Google Scholar] [CrossRef]
- Kornath, A.; Blecher, O.; Neumann, F.; Ludwig, R. Vibrational Spectra of the Tetramethylpnikogenonium Ions. J. Mol. Spectrosc. 2003, 219, 170–174. [Google Scholar] [CrossRef]
- Dietzel, P.D.C.; Kremer, R.K.; Jansen, M. Superoxide Compounds of the Large Pseudo-Alkali-Metal Ions Tetramethylammonium, -Phosphonium, and -Arsonium. Chem.—Asian J. 2007, 2, 66–75. [Google Scholar] [CrossRef]
- Palacios, E.; Burriel, R.; Ferloni, P. The Phases of [(CH3)4N](ClO4) at Low Temperature. Acta Crystallogr. Sect. B Struct. Sci. 2003, 59, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Filinchuk, Y.; Richter, B.; Jensen, T.R.; Dmitriev, V.; Chernyshov, D.; Hagemann, H. Porous and Dense Magnesium Borohydride Frameworks: Synthesis, Stability, and Reversible Absorption of Guest Species. Angew. Chem. Int. Ed. 2011, 50, 11162–11166. [Google Scholar] [CrossRef] [PubMed]
- Tumanov, N.A.; Roedern, E.; Łodziana, Z.; Nielsen, D.B.; Jensen, T.R.; Talyzin, A.V.; Černý, R.; Chernyshov, D.; Dmitriev, V.; Palasyuk, T.; et al. High-Pressure Study of Mn(BH4)2 Reveals a Stable Polymorph with High Hydrogen Density. Chem. Mater. 2016, 28, 274–283. [Google Scholar] [CrossRef]
Compound | Tetramethylphosphonium Borohydride | Tetramethylphosphonium Chloride | |
---|---|---|---|
Formula | [(CH3)4P]BH4 | [(CH3)4P]Cl | |
T [K] | 100 | 300 | 100 |
Space group | P63mc | P63mc | P63mc |
Unit cell dimensions [Å3] | a = 6.9190(2) c = 10.3350(3) | a = 7.0231(17) c = 10.483(3) | a = 6.8427(2) c = 9.3740(3) |
c/a | 1.494 | 1.493 | 1.370 |
V [Å3] | 428.48(2) | 447.8(2) | 380.11(2) |
Z | 2 | 2 | 2 |
V/Z [Å3] | 214.24 | 223.9 | 190.06 |
d [g cm−3] | 0.821 | 0.786 | 1.106 |
(P–C)min [Å] | 1.781(3) | 1.73(3) | 1.777(2) |
(P–C)max [Å] | 1.789(7) | 1.761(14) | 1.790(6) |
(C–P–C)min [°] | 109.41(12) | 108.1(6) | 108.93(9) |
(C–P–C)max [°] | 109.54(12) | 110.8(6) | 110.01(9) |
(B–H)min [Å] | 1.186(10) | 1.190(10) | - |
(B–H)max [Å] | 1.190(10) | 1.190(10) | - |
(C–H)min [Å] | 1.079(10) | 1.082(10) | 1.061(7) |
(C–H)max [Å] | 1.081(10) | 1.083(10) | 1.071(8) |
(P…An)min [Å] * | 4.1240(11) | 4.18(2) | 3.8242(9) |
(P…P)min [Å] | 6.53151(14) | 6.6268(14) | 6.12988(14) |
(An…An)min [Å] * | 6.53151(14) | 6.6268(14) | 6.12988(14) |
(H…H)min [Å] | 2.22(4) | 2.16(13) | 2.71(3) |
Goodness of fit | 1.087 | 1.134 | 1.046 |
R1 [%] | 3.77 | 9.20 | 2.81 |
wR2 [%] | 10.13 | 30.33 | 7.85 |
CSD No | 2271776 | 2271774 | 2271775 |
Phase of [(CH3)4P]BH4 | V0/Z [Å3] | B0 [GPa] | B0′ | Max Δp [GPa] |
---|---|---|---|---|
P63mc | 205.1(22) | 12.3(6) | 4.3 | 0.55 |
P21212 | 188.4(7) | 15.0(3) | 4.3 | 0.18 |
P-421m | 186.6(5) | 16.2(2) | 4.3 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaroń, T. The Preparation, Characterization, and Pressure-Influenced Dihydrogen Interactions of Tetramethylphosphonium Borohydride. Materials 2023, 16, 5334. https://doi.org/10.3390/ma16155334
Jaroń T. The Preparation, Characterization, and Pressure-Influenced Dihydrogen Interactions of Tetramethylphosphonium Borohydride. Materials. 2023; 16(15):5334. https://doi.org/10.3390/ma16155334
Chicago/Turabian StyleJaroń, Tomasz. 2023. "The Preparation, Characterization, and Pressure-Influenced Dihydrogen Interactions of Tetramethylphosphonium Borohydride" Materials 16, no. 15: 5334. https://doi.org/10.3390/ma16155334
APA StyleJaroń, T. (2023). The Preparation, Characterization, and Pressure-Influenced Dihydrogen Interactions of Tetramethylphosphonium Borohydride. Materials, 16(15), 5334. https://doi.org/10.3390/ma16155334