Surface Morphology and Optical Properties of Hafnium Oxide Thin Films Produced by Magnetron Sputtering
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, X.; Li, Y.; Yang, H.; Liang, Y.; He, K.; Sun, W.; Lin, H.-H.; Yao, S.; Lu, X.; Wan, L.; et al. Investigation of HfO2 thin films on Si by X-ray Photoelectron Spectroscopy, Rutherford Backscattering, Grazing Incidence X-ray Diffraction and Variable Angle Spectroscopic Ellipsometry. Crystals 2018, 8, 248. [Google Scholar] [CrossRef]
- Kukli, K.; Aarik, J.; Ritala, M.; Uustare, T.; Sajavaara, T.; Lu, J.; Sundqvist, J.; Aidla, A.; Pung, L.; Hårsta, A.; et al. Effect of selected Atomic Layer Deposition parameters on the structure and dielectric properties of hafnium oxide films. J. Appl. Phys. 2004, 96, 5298–5307. [Google Scholar] [CrossRef]
- Khoshman, J.M.; Kordesch, M.E. Optical properties of a-HfO2 thin films. Surf. Coat. Technol. 2006, 201, 3530–3535. [Google Scholar] [CrossRef]
- He, G.; Liu, M.; Zhu, L.Q.; Chang, M.; Fang, Q.; Zhang, L.D. Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100). Surf. Sci. 2005, 576, 67–75. [Google Scholar] [CrossRef]
- Jie, N.; Yu, Z.; Qin, Z.; Zhengjun, Z. Morphology in-design deposition of HfO2 thin films. J. Am. Ceram. Soc. 2008, 91, 3458–3460. [Google Scholar] [CrossRef]
- Laishram, D.; Shejale, K.P.; Gupta, R.; Sharma, R.K. Solution processed hafnia nanoaggregates: Influence of surface oxygen on catalytic soot oxidation. ACS Sustain. Chem. Eng. 2018, 6, 11286–11294. [Google Scholar] [CrossRef]
- Laudadio, E.; Stipa, P.; Pierantoni, L.; Mencarelli, D. Phase properties of different HfO2 polymorphs: A DFT-based study. Crystals 2022, 12, 90. [Google Scholar]
- Perevalov, T.V.; Gutakovskii, A.K.; Kruchinin, V.N.; Gritsenko, V.A.; Prosvirin, I.P. Atomic and electronic structure of ferroelectric La-doped HfO2 films. Mater. Res. Express 2019, 6, 036403. [Google Scholar] [CrossRef]
- Xu, L.; Nishimura, T.; Shibayama, S.; Yajima, T.; Migita, S.; Toriumi, A. Ferroelectric phase stabilization of HfO2 by nitrogen doping. Appl. Phys. Express 2016, 9, 091501. [Google Scholar] [CrossRef]
- Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840. [Google Scholar] [CrossRef]
- Matsumoto, S.; Kaneda, Y.; Ito, A. Highly self-oriented growth of (020) and (002) monoclinic HfO2 thick films using Laser Chemical Vapor Deposition. Ceram. Int. 2020, 46, 1810–1815. [Google Scholar] [CrossRef]
- Zahoor, A.; Xu, C.; Shahid, T.; Arfan Anwar, M.; Song, Z. Effects of O2 flux on structure, optical properties and hydrophobicity of highly emissive antireflective HfO2 thin films by magnetron sputtering. Vacuum 2022, 197, 110824. [Google Scholar] [CrossRef]
- Lia, S.; Zhang, Y.; Yanga, D.; Yanga, W.; Chen, X.; Zhao, H.; Hou, J.; Yang, P. Structure and optical properties of HfO2 films on Si (100) substrates prepared by ALD at different temperatures. Phys. B 2020, 584, 412065. [Google Scholar] [CrossRef]
- Khan, S.B.; Zhang, Z.; Lee, S.L. Annealing influence on optical performance of HfO2 thin films. J. Alloy. Compd. 2020, 816, 152552. [Google Scholar] [CrossRef]
- Liaoa, J.; Dai, S.; Peng, R.-C.; Yang, J.; Zeng, B.; Liao, M.; Zhoua, Y. HfO2-based ferroelectric thin film and memory device applications in the post-Moore era: A review. Fundam. Res. 2023, 3, 332–345. [Google Scholar]
- Martínez, F.L.; Toledano-Luque, M.; Gandía, J.J.; Cárabe, J.; Bohne, W.; Röhrich, J.; Strub, E.; Mártil, I. Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering. J. Phys. D Appl. Phys. 2007, 40, 5256–5265. [Google Scholar] [CrossRef]
- Tchenka, A.; Agdad, A.; Samba Vall, M.C.; Hnawi, S.K.; Narjis, A.; Nkhaili, L.; Ibnouelghazi, E.; Ech-Chamikh, E. Effect of RF sputtering power and deposition time on optical and electrical properties of indium tin oxide thin film. Adv. Mater. Sci. Eng. 2021, 2021, 5556305. [Google Scholar]
- Mayer, M. SIMNRA User’s Guide 7.02; Max-Planck-Institut für Plasmaphysik: Garching, Germany, 2019. [Google Scholar]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Jellison, G.E.; Merkulov, V.I.; Puretzky, A.A.; Geohegan, D.B.; Eres, G.; Lowndes, D.H.; Caughman, J.B. Characterization of thin-film amorphous semiconductors using Spectroscopic Ellipsometry. Thin Solid Film. 2000, 377–378, 68–73. [Google Scholar] [CrossRef]
- Manikantan, J.; Ramalingam, H.B.; Chandar Shekar, B.; Murugan, B.; Kumar, R.R.; Santhoshi, J.S. Physical and optical properties of HfO2 NPs—synthesis and characterization in finding its feasibility in opto-electronic devices. Adv. Powder Technol. 2017, 28, 1636–1646. [Google Scholar] [CrossRef]
- Kim, K.-M.; Jang, J.S.; Yoon, S.-G.; Yun, J.-Y.; Chung, N.-K. Structural, optical and electrical properties of HfO2 thin films deposited at low-temperature using Plasma-enhanced Atomic Layer Deposition. Materials 2020, 13, 2008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, J.; Wang, Y.-N.; Choi, C.K.; Zhou, D.Y. Facing-target mid-frequency magnetron reactive sputtered hafnium oxide film: Morphology and electrical properties. J. Korean Phys. Soc. 2016, 68, 679–685. [Google Scholar]
- Raeliarijaona, A.; Cohen, R.E. First-principles calculations of Raman and Infrared Spectroscopy for phase identification and strain calibration of hafnia. Appl. Phys. Lett. 2022, 120, 242903. [Google Scholar] [CrossRef]
- Gupta, P.; Colvin, V.L.; George, S.M. Hydrogen desorption kinetics from monohydride and dihydride species on silicon surfaces. Phys. Rev. B 1988, 37, 8234. [Google Scholar] [CrossRef]
- Gunde, M.K. Vibrational modes in amorphous silicon dioxide. Phys. B 2000, 292, 286–295. [Google Scholar] [CrossRef]
- Li, S.T.; Silvers, S.J.; El-Shall, M.S. Surface oxidation and luminescence properties of weblike agglomeration of silicon nanocrystals produced by a laser vaporization-controlled condensation technique. J. Phys. Chem. B 1997, 101, 1794–1802. [Google Scholar] [CrossRef]
- Sánchez, O.; Gómez-Aleixandre, C.; Palacio, C. IR spectra resolution in fluorinated silicon nitride films. J. Mater. Sci. 1991, 26, 6244–6248. [Google Scholar] [CrossRef]
- Bi, M.; Zhu, J.; Luo, Y.; Cai, H.; Li, X.; Wang, X.; Wei, Y.; Wang, X.; Hu, C.; Hu, J.; et al. Effect of deposition temperature on the surface, structural, and mechanical properties of HfO2 using Chemical Vapor Deposition (CVD). Coatings 2022, 12, 1731. [Google Scholar] [CrossRef]
- Nie, X.; Ma, F.; Ma, D.; Xu, K. Growth mode evolution of hafnium oxide by Atomic Layer Deposition. J. Vac. Sci. Technol. A 2014, 32, 01A109. [Google Scholar] [CrossRef]
- Cao, J.; Yuan, B.; Gong, N.; Meng, T.L.; Teo, S.L.; Yong, A.M.; Zhang, X.; Lin, M.; Karyappa, R.; Zhang, L.; et al. Insights into thin film blistering of gold coating on metal substrate. Appl. Surf. Sci. 2023, 611, 155700. [Google Scholar] [CrossRef]
- Zaharescu, M.; Teodorescu, V.S.; Gartner, M.; Blanchin, M.G.; Barau, A.; Anastasescu, M. Correlation between the method of preparation and the properties of the sol-gel HfO2 thin films. J. Non-Cryst. Solids 2008, 354, 409–415. [Google Scholar] [CrossRef]
- Kappes, M.; Frankel, G.S.; Sridhar, N. Adhesion and adhesion degradation of a pressure sensitive tape on carbon steel. Prog. Org. Coat. 2010, 69, 57–62. [Google Scholar] [CrossRef]
- Abadias, G.; Chason, E.; Keckes, J.; Sebastiani, M.; Thompson, G.B.; Barthel, E.; Doll, G.L.; Murray, C.E.; Stoessel, C.H.; Martinu, L. Review article: Stress in thin films and coatings: Current status, challenges, and prospects. J. Vac. Sci. Technol. A 2018, 36, 020801. [Google Scholar] [CrossRef]
- Malerba, C.; Valentini, M.; Azanza Ricardo, C.L.; Rinaldi, A.; Cappelletto, E.; Scardi, P.; Mittiga, A. Blistering in Cu2ZnSnS4 thin films: Correlation with residual stresses. Mater. Des. 2016, 108, 725–735. [Google Scholar] [CrossRef]
- Zhao, S.; Yuan, G.; Zhang, D.; Xu, P.; Li, G.; Han, W. Formation and elimination mechanism of thermal blistering in Al2O3/Si system. J. Mater. Sci. 2021, 56, 17478–17489. [Google Scholar] [CrossRef]
- Guo, T.; He, J.; Pang, X.; Volinsky, A.A.; Su, Y.; Qiao, L. High temperature brittle film adhesion measured from annealing-induced circular blisters. Acta Mater. 2017, 138, 1–9. [Google Scholar] [CrossRef]
- Eren, B.; Marot, L.; Günzburger, G.; Renault, P.-O.; Glatzel, T.; Steiner, R.; Meyer, E. Hydrogen-induced buckling of gold films. J. Phys. D Appl. Phys. 2014, 47, 025302. [Google Scholar] [CrossRef]
- Smith, D.; Baumeister, P. Refractive index of some oxide and fluoride coating materials. Appl. Opt. 1979, 18, 111–115. [Google Scholar] [CrossRef]
- Conlon, D.; Doyle, W.P. Absorption spectra of zirconium and hafnium dioxides. J. Chem. Phys. 1965, 42, 4315. [Google Scholar] [CrossRef]
- Bright, T.J.; Watjen, J.I.; Zhang, Z.M.; Muratore, C.; Voevodin, A.A. Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared. Thin Solid Film. 2012, 520, 6793–6802. [Google Scholar] [CrossRef]
- Haynes, W.M. Chapter 4: Properties of the elements and inorganic compounds. In CRC Handbook of Chemistry and Physics, 95th ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 4–66. [Google Scholar]
- Tauc, J. Amorphous and Liquid Semiconductors; Plenum: London, UK; New York, NY, USA,, 1974. [Google Scholar]
- Ortega, J.J.; Aguilar-Frutis, M.A.; Alarcón, G.; Falcony, C.; Méndez-García, V.H.; Araiza, J.J. Band gap engineering of indium zinc oxide by nitrogen incorporation. Mater. Sci. Eng. B 2014, 187, 83–88. [Google Scholar] [CrossRef]
- Callegari, A.; Cartier, E.; Gribelyuk, M.; Okorn-Schmidt, H.F.; Zabel, T. Physical and electrical characterization of hafnium oxide and hafnium silicate sputtered films. J. Appl. Phys. 2001, 90, 6466–6475. [Google Scholar] [CrossRef]
Sample | WHf | Thickness (nm ± 10%) | Deposition Rate (nm/min) | Hf (at.%) | O2 (at.%) |
---|---|---|---|---|---|
HfO-100 | 100 | 80 | 2.0 ± 0.2 | 16 ± 2 | 84 ± 2 |
HfO-150 | 150 | 150 | 3.8 ± 0.4 | 20 ± 2 | 80 ± 2 |
HfO-200 | 200 | 300 | 7.5 ± 0.8 | 26 ± 2 | 74 ± 2 |
Sample | 507 cm−1 m-Hf-O | 570 cm−1 a-Hf-O | 700–820 cm−1 Region | Area | |||
---|---|---|---|---|---|---|---|
736 cm−1 m-Hf-O | 772 cm−1 m-Hf-O | 818 cm−1 Si-O | (arb. Units) | ||||
Crystalline | Total | ||||||
HfO-100 | 2.27 | 1.01 | 0.91 | 1.23 | - | 4.41 | 5.85 |
HfO-150 | 2.70 | 0.84 | 1.03 | 0.84 | - | 4.57 | 5.91 |
HfO-200 | 5.20 | 0.83 | 1.27 | 1.06 | - | 7.53 | 8.50 |
Sample | Average Distance (nm) | Height (nm) | Average Diameter (nm) | Projected Area (µm2) | Volume (µm3) |
---|---|---|---|---|---|
HfO-100 | 650 ± 130 | 27 ± 6 | 261 ± 68 | 0.1038 ± 0.04 | 1.703 × 10−3 |
HfO-150 | 1380 ± 275 | 62 ± 12 | 866 ± 246 | 0.7523 ± 0.56 | 1.634 × 10−2 |
HfO-200 | 2650 ± 500 | 176 ± 36 | 1183 ± 357 | 1.6490 ± 0.48 | 1.629 × 10−1 |
Sample | Parameter A | Parameter B | % Voids * |
---|---|---|---|
HfO-100 | 1.7520 | 0.01189 | 21 |
HfO-150 | 1.8200 | 0.01107 | 15 |
HfO-200 | 1.8366 | 0.01151 | 12 |
m-HfO2 | 1.9627 * | 0.02200 | - |
a-HfO2 | 1.8500 | 0.01170 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araiza, J.d.J.; Álvarez-Fraga, L.; Gago, R.; Sánchez, O. Surface Morphology and Optical Properties of Hafnium Oxide Thin Films Produced by Magnetron Sputtering. Materials 2023, 16, 5331. https://doi.org/10.3390/ma16155331
Araiza JdJ, Álvarez-Fraga L, Gago R, Sánchez O. Surface Morphology and Optical Properties of Hafnium Oxide Thin Films Produced by Magnetron Sputtering. Materials. 2023; 16(15):5331. https://doi.org/10.3390/ma16155331
Chicago/Turabian StyleAraiza, José de Jesús, Leo Álvarez-Fraga, Raúl Gago, and Olga Sánchez. 2023. "Surface Morphology and Optical Properties of Hafnium Oxide Thin Films Produced by Magnetron Sputtering" Materials 16, no. 15: 5331. https://doi.org/10.3390/ma16155331
APA StyleAraiza, J. d. J., Álvarez-Fraga, L., Gago, R., & Sánchez, O. (2023). Surface Morphology and Optical Properties of Hafnium Oxide Thin Films Produced by Magnetron Sputtering. Materials, 16(15), 5331. https://doi.org/10.3390/ma16155331