Experimental Investigations of Ni–Ti–Ru System: Liquidus Surface Projection and 1150 °C Isothermal Section
Abstract
:1. Introduction
2. Literature Review
2.1. Binary Systems
2.2. Ni–Ti–Ru Ternary System
Phase | Strukturbericht Designation | Pearson Symbol | Space Group | Prototype | Reference |
---|---|---|---|---|---|
Liquid | / | / | / | / | / |
γ(Ni) | A1 | cF4 | Cu | [42] | |
β(Ti) | A2 | cI2 | W | [43] | |
α(Ti) | A3 | hP2 | Mg | [44] | |
δ(Ru) | A3 | hP2 | Mg | [45] | |
Ni3Ti | D024 | hP16 | Ni3Ti | [46] | |
NiTi | B2 | cP2 | CsCl | [47] | |
NiTi2 | E93 | cF96 | NiTi2 | [48] | |
RuTi | B2 | cP2 | CsCl | [49] |
3. Experimental Methods
4. Results and Discussion
4.1. Isothermal Section at 1150 °C
4.2. Liquidus Surface Projection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pollock, T.M.; Field, R.D. Dislocations and high-temperature plastic deformation of superalloy single crystals. Dislocat. Solids 2002, 11, 547–618. [Google Scholar]
- Kozar, R.W.; Suzuki, A.; Milligan, W.W.; Schirra, J.J.; Savage, M.F.; Pollock, T.M. Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys. Metall. Mater. Trans. A 2009, 40, 1588–1603. [Google Scholar] [CrossRef]
- Antonov, S.; Detrois, M.; Isheim, D.; Seidman, D.N.; Helmink, R.C.; Goetz, R.L.; Sun, E.; Tin, S. Comparison of thermodynamic database models and APT data for strength modeling in high Nb content γ–γ′ Ni-base superalloys. Mater. Des. 2015, 86, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Mishima, Y.; Ochiai, S.; Hamao, N.; Yodogawa, M.; Suzuki, T. Mechanical properties of Ni3Al with ternary addition of transition metal elements. Trans. Jpn. Inst. Met. 1986, 27, 648–655. [Google Scholar] [CrossRef] [Green Version]
- Mishima, Y.; Ochiai, S.; Hamao, N.; Yodogawa, M.; Suzuki, T. Solid Solution Hardening of Ni3Al with ternary additions. Trans. Jpn. Inst. Met. 1986, 27, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Christofidou, K.A.; Jones, N.G.; Pickering, E.J.; Flacau, R.; Hardy, M.C.; Stone, H.J. The microstructure and hardness of Ni–Co–Al–Ti–Cr quinary alloys. J. Alloys Compd. 2016, 688, 542–552. [Google Scholar] [CrossRef]
- Song, W.; Wang, X.G.; Li, J.G.; Ye, L.H.; Hou, G.C.; Yang, Y.H.; Liu, J.L.; Liu, J.D.; Pei, W.L.; Zhou, Y.Z.; et al. Effect of ruthenium on microstructure and high-temperature creep properties of fourth generation Ni-based single-crystal superalloys. Mater. Sci. Eng. A 2020, 772, 138646. [Google Scholar] [CrossRef]
- Chen, J.Y.; Feng, Q.; Sun, Z.Q. Topologically close-packed phase promotion in a Ru-containing single crystal superalloy. Scripta Mater. 2010, 63, 795–798. [Google Scholar] [CrossRef]
- Chen, J.Y.; Feng, Q.; Cao, L.M.; Sun, Z.Q. Influence of Ru addition on microstructure and stress-rupture property of Ni-based single crystal superalloys. Prog. Nat. Sci. Mater. 2010, 20, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.A.; Wang, L.; Meng, F.Q.; Yu, H.Y.; Sun, D.B. Quantitative study on Ru local atomic structure in Ni-Al-Ru ternary alloys. J. Alloys Compd. 2022, 909, 164766. [Google Scholar] [CrossRef]
- Li, H.; Zheng, Y.; Pei, Y.; De Hosson, J.T.M. TiNi shape memory alloy coated with tungsten: A novel approach for biomedical applications. Mater. Sci. Mater. Med. 2014, 25, 1249–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, G.; Ho, J.K.L.; Dong, G.; Hua, M. Fabrication self-recovery bulge textures on TiNi shape memory alloy and its tribological properties in lubricated sliding. Tribol. Int. 2016, 96, 11–22. [Google Scholar] [CrossRef]
- Tsuji, M.; Hosoda, H.; Wakashima, K.; Yamabe-Mitarai, Y. Phase Stability and Mechanical Properties of Ti(Ni,Ru) Alloys. MRS Online Proc. Libr. Arch. 2002, 753, 552. [Google Scholar] [CrossRef]
- Tamilarasan, T.R.; Rajendran, R.; Rajagopal, G.; Sudagar, J. Effect of surfactants on the coating properties and corrosion behaviour of Ni–P–nano-TiO2. Surf-Coat. Tech. 2015, 276, 320–326. [Google Scholar] [CrossRef]
- Velikanova, T.Y.; Semenova, E.L.; Krendelsberger, N.Y.; Mazhuga, T.G. The Ti–Ni–Ru ternary system. Calphad 1999, 23, 133–140. [Google Scholar] [CrossRef]
- Nielsen, J.P.; Margolin, H. Titanium–Nickel Phase Diagram; Wright Air Development Center; New York University: New York, NY, USA, 1951. [Google Scholar]
- Poole, D.M.; Humerothery, W. The Equilibrium Diagram of the System Nickel–Titanium. J. Inst. Metals. 1955, 83, 473–480. [Google Scholar]
- Purdy, G.R.; Parr, J.G. A Study of Titanium Nickel System Between Ti2Ni and TiNi. Trans. AIME 1961, 221, 636–639. [Google Scholar]
- Jia, C.C.; Ishida, K.; Nishizawa, T. Partitioning of alloying elements between gamma (A1) and eta (D024) phases in the Ni-Ti base systems. Exp. Methods Phase Diagr. Determ. 1994, 31–38. [Google Scholar]
- Li, F.; Ardell, A.J. Coherent solubility limits of γ′-type phases in Ni–Al, Ni–Ga and Ni–Ti alloys. Scr. Mater. 1997, 37, 1123–1128. [Google Scholar] [CrossRef]
- Wasilewski, R.J.; Butler, S.R.; Worden, J. Homogeneity range and the martensitic transformation in TiNi. Metall. Mater. Trans. B 1971, 2, 229–238. [Google Scholar] [CrossRef]
- Bastin, G.F.; Rieck, G.D. Diffusion in the titanium-nickel system: I. occurrence and growth of the various intermetallic compounds. Metall. Trans. 1974, 5, 1817–1826. [Google Scholar] [CrossRef]
- Kajikawa, K.; Oikawa, K.; Takahashi, F.; Yamada, H.; Anzai, K. Reassessment of Liquid/Solid Equilibrium in Ni-Rich Side of Ni–Nb and Ni–Ti Systems. Mater. Trans. 2010, 51, 781–786. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, L.; Nesor, H. Coupled phase diagrams and thermochemical data for transition metal binary systems-II. Calphad 1978, 2, 81–108. [Google Scholar] [CrossRef]
- Liang, H.Y.; Jin, Z.P. A reassessment of the Ti–Ni system. Calphad 1993, 17, 415–426. [Google Scholar]
- Bellen, P.; Hari Kumar, K.C.; Wollants, P. Thermodynamic assessment of the Ni–Ti phase diagram. Int. J. Mater. Res. 1996, 87, 972–978. [Google Scholar] [CrossRef]
- Tang, W.; Sundman, B.; Sandström, R.; Qiu, C. New modelling of the B2 phase and its associated martensitic transformation in the Ti–Ni system. Acta Mater. 1999, 47, 3457–3468. [Google Scholar] [CrossRef]
- Tokunaga, T.; Hashima, K.; Ohtani, H.; Hasebe, M. Thermodynamic analysis of the Ni–Si–Ti system using thermochemical properties determined from Ab initio calculations. Mater. Trans. 2004, 45, 1507–1514. [Google Scholar] [CrossRef] [Green Version]
- Keyzer, J.D.; Cacciamani, G.; Dupin, N.; Wollants, P. Thermodynamic modeling and optimization of the Fe–Ni–Ti system. Calphad 2009, 33, 109–123. [Google Scholar] [CrossRef]
- Hu, B.; Du, Y.; Schuster, J.C.; Sun, W.H.; Liu, S.H.; Tang, C.Y. Thermodynamic modeling of the Cr–Ni–Ti system using a four-sublattice model for ordered/disordered bcc phases. Thermochim. Acta 2014, 578, 35–42. [Google Scholar] [CrossRef]
- Santhy, K.; Kumar, K.C.H. Thermodynamic reassessment of Nb–Ni–Ti system with order-disorder model. J. Alloys Compd. 2015, 619, 733–747. [Google Scholar] [CrossRef]
- Hallström, S. Thermodynamic assessment of the Ni–Ru system. J. Phase Equilib. Diffus. 2004, 25, 252–254. [Google Scholar] [CrossRef]
- Raub, E.; Roeschel, E. The alloys of ruthenium with titanium and zirconium. Z. Metallk. 1963, 54, 455–462. [Google Scholar]
- Eremenko, V.N.; Shtepa, T.D.; Khoruzhaya, V.T. Ti-Ru phase diagram. Izv. Akad. Nauk SSSR Met. 1973, 2, 204–206. [Google Scholar]
- Boriskina, N.G.; Kornilov, I.I. Ti–Ru Phase-Diagram. Izv. Akad. Nauk SSSR Met. 1976, 2, 162–165. [Google Scholar]
- Kaufman, L.; Bernstein, H. Computer Calculation of Phase Diagrams; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Mazhuga, T.G.; Danilenko, V.M.; Velikanova, T.Y.; Semenova, E.L. Thermodynamic calculation of phase equilibria in the Ti–Ru, Ti–Os, Ni–Ru binary systems. Calphad 1998, 22, 59–67. [Google Scholar] [CrossRef]
- Gao, Y.L.; Guo, C.P.; Li, C.R.; Cui, S.H.; Du, Z.M. Thermodynamic modeling of the Ru–Ti system. J. Alloys Compd. 2009, 479, 148–151. [Google Scholar] [CrossRef]
- Boriskina, N.G. Character of the Reaction of the Intermetallic Compounds in the NiTi–TiRu System. Inst. Met. Akad. Nauk SSSR Moscow 1980, 4907–4980. [Google Scholar]
- Eremenko, V.N.; Tretyachenko, L.A.; Prima, S.B.; Semenova, E.L. Phase Diagrams of Ti–Ni–Gr. IV–VIII Transition Metal Systems. Poroshk. Metall. 1984, 8, 46–55. [Google Scholar]
- Semenova, E.L.; Rusetskaya, N.Y.; Petyukh, V.M. The TiNi–TiRu System. J. Phase Equilib. Diffus. 1995, 4, 297–299. [Google Scholar] [CrossRef]
- Yousuf, M.; Sahu, P.C.; Jajoo, H.K.; Rajagopalan, S.; Rajan, K.G. Effect of magnetic transition on the lattice expansion of nickel. J. Phys. F Met. Phys. 1986, 16, 373. [Google Scholar] [CrossRef]
- Spreadborough, J.; Christian, J.W. The measurement of the lattice expansions and Debye temperatures of titanium and silver by X-ray methods. Proc. Phys. Soc. 1959, 74, 609. [Google Scholar] [CrossRef]
- Pawar, R.R.; Deshpande, V.T. The anisotropy of the thermal expansion of α-titanium. Acta Crystallogr. A 1968, 24, 316–317. [Google Scholar] [CrossRef] [Green Version]
- King, H.W. Crystal Structures of the Elements at 25 °C. Bull. Alloy Phase Diagr. 1981, 2, 401–402. [Google Scholar] [CrossRef]
- Taylor, A.; Floyd, R.W. Precision measurements of lattice parameters of non-cubic crystals. Acta Crystallogr. 1950, 3, 285–289. [Google Scholar] [CrossRef]
- Dwight, A.E. CsCl-type equiatomic phases in binary alloys of transition elements. Trans. Min. Metall. Eng. 1959, 215, 283–286. [Google Scholar]
- Yurko, G.A.; Barton, J.W.; Parr, J.G. The crystal structure of Ti2Ni. Acta Crystallogr. 1959, 12, 909–911. [Google Scholar] [CrossRef]
- Jordan, C.B. Crystal structure of TiRu and TiOs. JOM 1955, 7, 832–833. [Google Scholar] [CrossRef]
- Jin, Z.P. A study of the range of stability of sigma phase in some ternary systems. Scand. J. Metall. 1981, 10, 279–287. [Google Scholar]
- Raub, E.; Menzel, D. Die Nickel-Ruthenium-Legierungen. Int. J. Mater. Res. 1961, 52, 831–833. [Google Scholar] [CrossRef]
Sample | Nominal Composition/at.% | Phase | Composition/at.% | ||
---|---|---|---|---|---|
Ni | Ti | Ru | |||
B1 | Ni15.76Ti68.47Ru15.77 | (Ni,Ru)Ti | 15.04 | 55.00 | 29.96 |
β(Ti) | 10.16 | 78.17 | 11.67 | ||
Liq.1 | 28.14 | 70.01 | 1.85 | ||
B2 | Ni39.79Ti54.80Ru5.41 | Liq.1 | 30.84 | 68.81 | 0.71 |
(Ni,Ru)Ti | 41.44 | 51.46 | 7.10 | ||
B3 | Ni59.17Ti29.94Ru20.44 | Ni3Ti | 71.70 | 26.02 | 2.28 |
(Ni,Ru)Ti | 5.53 | 48.97 | 45.50 | ||
B4 | Ni59.28Ti30.92Ru9.80 | Ni3Ti | 72.93 | 26.20 | 0.87 |
(Ni,Ru)Ti | 11.55 | 49.53 | 38.92 | ||
B5 | Ni53.28Ti35.65Ru11.06 | Ni3Ti | 73.29 | 26.23 | 0.48 |
(Ni,Ru)Ti | 25.84 | 49.63 | 24.53 | ||
B6 | Ni56.61Ti4.76Ru38.63 | δ(Ru) | 28.43 | 3.83 | 67.75 |
δ(Ni,Ru) | 34.86 | 4.61 | 60.53 | ||
γ(Ni) | 69.86 | 5.52 | 24.62 | ||
B7 | Ni39.74Ti20.59Ru39.67 | δ(Ru) | 20.31 | 10.87 | 68.82 |
τ1 | 48.37 | 23.44 | 28.19 | ||
(Ni,Ru)Ti | 2.94 | 47.43 | 49.63 | ||
B8 | Ni59.08Ti13.36Ru27.56 | δ(Ni,Ru) | 50.44 | 11.63 | 37.93 |
τ1 | 56.91 | 19.69 | 23.40 | ||
γ(Ni) | 63.49 | 12.27 | 22.24 | ||
B9 | Ni64.51Ti25.59Ru9.90 | τ1 | 63.80 | 25.14 | 11.06 |
(Ni,Ru)Ti | 4.04 | 47.80 | 48.16 | ||
Ni3Ti | 65.08 | 25.63 | 24.53 | ||
B10 | Ni41.64Ti28.77Ru29.59 | τ1 | 51.79 | 24.09 | 24.12 |
(Ni,Ru)Ti | 4.15 | 48.59 | 47.26 | ||
B11 | Ni56.93Ti9.32Ru33.75 | δ(Ni,Ru) | 46.98 | 9.77 | 43.25 |
γ(Ni) | 66.09 | 9.79 | 24.12 | ||
B12 | Ni54.50Ti5.30Ru40.20 | δ(Ni,Ru) | 45.60 | 7.02 | 47.38 |
γ(Ni) | 68.13 | 7.38 | 24.49 | ||
B13 | Ni40.42Ti14.87Ru14.71 | τ1 | 50.17 | 22.77 | 27.06 |
δ(Ni,Ru) | 34.62 | 10.71 | 54.67 | ||
B14 | Ni67.01Ti17.84Ru15.15 | τ1 | 62.99 | 20.96 | 16.05 |
γ(Ni) | 73.06 | 12.49 | 14.45 | ||
B15 | Ni73.81Ti20.94Ru5.26 | Ni3Ti | 71.69 | 22.71 | 5.60 |
γ(Ni) | 82.55 | 13.15 | 4.30 |
Sample | Alloy Compositions/at.% | Primary Solidification Phase | ||
---|---|---|---|---|
Ni | Ti | Ru | ||
C1 | 17.76 | 25.54 | 56.70 | δ(Ru) |
C2 | 18.80 | 21.85 | 59.36 | δ(Ru) |
C3 | 41.22 | 17.48 | 41.30 | δ(Ru) |
C4 | 39.00 | 22.01 | 38.99 | δ(Ru) |
C5 | 59.96 | 10.59 | 29.45 | δ(Ru) |
C6 | 59.06 | 15.72 | 25.22 | δ(Ru) |
C7 | 59.39 | 24.74 | 15.86 | (Ni,Ru)Ti |
C8 | 58.33 | 38.56 | 3.11 | (Ni,Ru)Ti |
C9 | 62.75 | 33.73 | 3.52 | Ni3Ti |
C10 | 63.68 | 28.50 | 7.82 | Ni3Ti + (Ni,Ru)Ti |
C11 | 23.17 | 75.57 | 1.26 | β(Ti) + NiTi2 |
C12 | 13.54 | 73.27 | 13.19 | (Ni,Ru)Ti |
C13 | 11.27 | 76.83 | 11.90 | β(Ti) |
C14 | 54.21 | 20.31 | 25.48 | τ1 |
C15 | 50.54 | 24.08 | 25.38 | (Ni,Ru)Ti |
C16 | 54.51 | 24.05 | 21.44 | (Ni,Ru)Ti |
C17 | 12.55 | 35.39 | 52.07 | (Ni,Ru)Ti |
C18 | 64.14 | 8.78 | 27.07 | δ(Ru) |
C19 | 62.99 | 22.67 | 13.34 | τ1 |
C20 | 67.63 | 28.79 | 3.58 | Ni3Ti |
C21 | 64.88 | 27.32 | 7.80 | Ni3Ti + (Ni,Ru)Ti |
C22 | 27.07 | 74.20 | 1.72 | β(Ti) + NiTi2 |
C23 | 21.65 | 68.60 | 9.75 | (Ni,Ru)Ti |
C24 | 56.31 | 21.01 | 22.68 | τ1 |
C25 | 69.05 | 21.60 | 9.35 | Ni3Ti + τ1 |
C26 | 65.29 | 15.61 | 19.10 | γ(Ni) |
C27 | 64.64 | 21.06 | 14.30 | τ1 |
C28 | 24.14 | 70.94 | 4.92 | (Ni,Ru)Ti |
C29 | 68.83 | 18.90 | 12.26 | τ1 |
C30 | 68.44 | 23.87 | 7.69 | Ni3Ti + γ(Ni) |
C31 | 64.33 | 25.69 | 9.98 | τ1 |
Invariant Reaction | Reaction Type | Reaction Temperature (°C) | Reference |
---|---|---|---|
liq. + (Ni,Ru)Ti + δ(Ru) | P1 a | ~1500 | This work |
liq. + δ(Ru) ↔ τ1 + γ(Ni) | U1 | 1404 | This work |
liq. + τ1 ↔ γ(Ni) + Ni3Ti | U2 a | ~1330 | This work |
liq. + τ1 ↔ (Ni,Ru)Ti + Ni3Ti | U3 | 1337 | This work |
liq. + (Ni,Ru)Ti ↔ β(Ti) + NiTi2 | U4 | 984 | This work |
980 | [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, D.; Li, Z.; Liu, Y.; Zhao, M.; Hu, J. Experimental Investigations of Ni–Ti–Ru System: Liquidus Surface Projection and 1150 °C Isothermal Section. Materials 2023, 16, 5299. https://doi.org/10.3390/ma16155299
Ma D, Li Z, Liu Y, Zhao M, Hu J. Experimental Investigations of Ni–Ti–Ru System: Liquidus Surface Projection and 1150 °C Isothermal Section. Materials. 2023; 16(15):5299. https://doi.org/10.3390/ma16155299
Chicago/Turabian StyleMa, Dupei, Zhi Li, Yan Liu, Manxiu Zhao, and Jingxian Hu. 2023. "Experimental Investigations of Ni–Ti–Ru System: Liquidus Surface Projection and 1150 °C Isothermal Section" Materials 16, no. 15: 5299. https://doi.org/10.3390/ma16155299
APA StyleMa, D., Li, Z., Liu, Y., Zhao, M., & Hu, J. (2023). Experimental Investigations of Ni–Ti–Ru System: Liquidus Surface Projection and 1150 °C Isothermal Section. Materials, 16(15), 5299. https://doi.org/10.3390/ma16155299