Moldflow Simulation and Characterization of Pure Copper Fabricated via Metal Injection Molding
Abstract
1. Introduction
2. Materials and Methods
2.1. Feedstock
2.2. Moldflow Simulation
2.3. Metal Injection Molding (MIM)
2.4. Scanning Electron Microscopy (SEM)
2.5. 3D X-ray Computed Tomography
2.6. Microhardness
3. Results and Discussion
3.1. Moldflow Analysis
3.2. Surface Observation
3.3. Three-Dimensional Analysis
3.4. Microhardness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cañadilla, A.; Romero, A.; Rodríguez, G.P.; Caminero, M.; Dura, Ó.J. Mechanical, Electrical, and Thermal Characterization of Pure Copper Parts Manufactured via Material Extrusion Additive Manufacturing. Materials 2022, 15, 4644. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Fan, M.; Si, G.; Ren, Z. Thermal–Hydraulic Performance of Small Scale Micro-Channel and Porous-Media Heat-Exchangers. Int. J. Heat Mass Transf. 2001, 44, 1039–1051. [Google Scholar] [CrossRef]
- Lee, J.; Mudawar, I. Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part I—Pressure Drop Characteristics. Int. J. Heat Mass Transf. 2005, 48, 928–940. [Google Scholar] [CrossRef]
- Silvain, J.F.; Heintz, J.M.; Veillere, A.; Constantin, L.; Lu, Y.F. A Review of Processing of Cu/C Base Plate Composites for Interfacial Control and Improved Properties. Int. J. Extrem. Manuf. 2020, 2, 012002. [Google Scholar] [CrossRef]
- Flores, G.A.; Risopatron, C.; Pease, J. Processing of Complex Materials in the Copper Industry: Challenges and Opportunities Ahead. JOM 2020, 72, 3447–3461. [Google Scholar] [CrossRef]
- Benesperi, I.; Singh, R.; Freitag, M. Copper Coordination Complexes for Energy-Relevant Applications. Energies 2020, 13, 2198. [Google Scholar] [CrossRef]
- Ye, H.; Liu, X.Y.; Hong, H. Fabrication of Metal Matrix Composites by Metal Injection Molding-A Review. J. Mater. Process. Technol. 2008, 200, 12–24. [Google Scholar] [CrossRef]
- Chen, L.J.; Li, T.; Li, Y.M.; He, H.; Hu, Y.H. Porous Titanium Implants Fabricated by Metal Injection Molding. Trans. Nonferrous Met. Soc. China Eng. Ed. 2009, 19, 1174–1179. [Google Scholar] [CrossRef]
- German, R.M. Progress in Titanium Metal Powder Injection Molding. Materials 2013, 6, 3641–3662. [Google Scholar] [CrossRef]
- Singh, G.; Missiaen, J.-M.; Bouvard, D.; Chaix, J.-M. Copper Extrusion 3D Printing Using Metal Injection Moulding Feedstock: Analysis of Process Parameters for Green Density and Surface Roughness Optimization. Addit. Manuf. 2021, 38, 101778. [Google Scholar] [CrossRef]
- Binet, C.; Heaney, D.F.; Spina, R.; Tricarico, L. Experimental and Numerical Analysis of Metal Injection Molded Products. J. Mater. Process. Technol. 2005, 164–165, 1160–1166. [Google Scholar] [CrossRef]
- Poszwa, P.; Brzek, P.; Muszynski, P.; Szostak, M. Influence of Fill Imbalance on Pressure Drop in Injection Molding; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; ISBN 9783319993539. [Google Scholar]
- Baesso, R.; Salvador, M.; Lucchetta, G. Filling Balance Optimization for Plastics Injection Molding. CISM Int. Cent. Mech. Sci. Courses Lect. 2005, 486, 617–624. [Google Scholar] [CrossRef]
- Zhou, W.H.; Liu, B.; Wen, S.P.; Qu, J.P. Pressure Losses in the Packing Stage of Pulsatiled Injection Molding. Polym. Eng. Sci. 1986, 26, 1282–1289. [Google Scholar]
- Moon, A.P.; Dwarapudi, S.; Sista, K.S.; Kumar, D.; Sinha, G.R. Opportunity and Challenges of Iron Powders for Metal Injection Molding. ISIJ Int. 2021, 61, 2015–2033. [Google Scholar] [CrossRef]
- Lin, C.M.; Hung, Y.T.; Tan, C.M. Hybrid Taguchi–Gray Relation Analysis Method for Design of Metal Powder Injection-Molded Artificial Knee Joints with Optimal Powder Concentration and Volume Shrinkage. Polymers 2021, 13, 865. [Google Scholar] [CrossRef]
- Mohamad Nor, N.H.; Muhamad, N.; Ismail, M.H.; Jamaludin, K.R.; Ahmad, S.; Ibrahim, M.H.I. Flow Behaviour to Determine the Defects of Green Part in Metal Injection Molding. Int. J. Mech. Mater. Eng. 2009, 4, 70–75. [Google Scholar]
- Muangwaeng, B.; Rojananan, S.; Rojananan, S. The Effect of Injection Parameters on Morphology in Metal Injection Moulding. Adv. Mater. Res. 2013, 802, 174–178. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Khalil, K.A. Effect of Powder Loading on Metal Injection Molding Stainless Steels. J. Mater. Process. Technol. 2007, 183, 432–439. [Google Scholar] [CrossRef]
- Keshavarz Panahi, A.; Mianajiy, H.; Miandoabchi, E.; Hussaini Fareed, M. Optimization of the Powder Injection Molding Process Parameters Using the Sequential Simplex Algorithm and Sensitivity Analysis. J. Manuf. Sci. Eng. 2013, 135, 011006. [Google Scholar] [CrossRef]
- Ahn, S.; Park, S.J.; Lee, S.; Atre, S.V.; German, R.M. Effect of Powders and Binders on Material Properties and Molding Parameters in Iron and Stainless Steel Powder Injection Molding Process. Powder Technol. 2009, 193, 162–169. [Google Scholar] [CrossRef]
- German, R.M.; Johnson, J.L. Metal Powder Injection Molding of Copper and Copper Alloys for Microelectronic Heat Dissipation. Int. J. Powder Metall. 2007, 43, 55–63. [Google Scholar]
- Ouyang, M.; Wang, C.; Zhang, H.U.; Liu, X. Effects of Bonding Treatment and Ball Milling on W-20 Wt.% Cu Composite Powder for Injection Molding. Materials 2021, 14, 1897. [Google Scholar] [CrossRef] [PubMed]
- Urtekin, L.; Genç, A.; Bozkurt, F. Fabrication and Simulation of Feedstock for Titanium-Powder Injection-Molding Cortical-Bone Screws. Mater. Tehnol. 2019, 53, 619–625. [Google Scholar] [CrossRef]
- Xu, S.; Cao, S.; Hui, J. Mold Optimization Design of Metal Powder Injection Product USB Interface Based on Mold Flow Analysis. IOP Conf. Ser. Earth Environ. Sci. 2019, 267, 032034. [Google Scholar] [CrossRef]
- Heaney, D.F.; Greene, C.D. Molding of Components in Metal Injection Molding (MIM). In Handbook of Metal Injection Molding; Woodhead Publishing: Sawston, UK, 2019; pp. 105–127. [Google Scholar] [CrossRef]
- Nishiyabu, K. Micro Metal Powder Injection Molding. In Some Critical Issues for Injection Molding; Intechopen: London, UK, 2012. [Google Scholar] [CrossRef][Green Version]
- Thornagel, M. Simulating Flow Can Help Avoid Mould Mistakes. Met. Powder Rep. 2010, 65, 26–29. [Google Scholar] [CrossRef]
- Quality Prediction Result. Available online: https://help.autodesk.com/view/MFAA/2023/ENU/?guid=GUID-4F115A68-4469-4414-BB62-80B341FAC3AF (accessed on 20 July 2023).
- Shang, F.; Qiao, B.; Dong, Y.F.; Cao, Z.W.; Sun, W.; He, Y.Q. Simulation on the Two-Phase Separation of Powder Injection Molding 316L Stainless Steel. Medziagotyra 2019, 25, 246–251. [Google Scholar] [CrossRef]
- Butković, S.; Šarić, E.; Mehmedović, M. Porosity Distribution in Metal Injection Molded Parts. Adv. Technol. Mater. 2021, 46, 7–10. [Google Scholar] [CrossRef]
- Widiantara, I.P.; Putri, R.A.K.; Han, D.I.; Bahanan, W.; Lee, E.H.; Woo, C.H.; Kang, J.H.; Ryu, J.; Ko, Y.G. Characterization of Green Part of Steel from Metal Injection Molding: An Analysis Using Moldflow. Materials 2023, 16, 2516. [Google Scholar] [CrossRef]
- Barriere, T.; Liu, B.; Gelin, J.C. Determination of the Optimal Process Parameters in Metal Injection Molding from Experiments and Numerical Modeling. J. Mater. Process. Technol. 2003, 143–144, 636–644. [Google Scholar] [CrossRef]
- Azzouni, M.; Demers, V.; Dufresne, L. Mold Filling Simulation and Experimental Investigation of Metallic Feedstock Used in Low-Pressure Powder Injection Molding. Int. J. Mater. Form. 2021, 14, 961–972. [Google Scholar] [CrossRef]
- Ahmad, F.; Muhsan, A.S.; Raza, M.R. Rheological Behavior of Carbon Nanotubes/ Copper Feedstocks for Metal Injection Molding. Adv. Mater. Res. 2012, 403–408, 5335–5340. [Google Scholar] [CrossRef]
- Bahrin, M.D.K.; Wahab, N.A.; Nordin, N.A.; Ismail, M.H.; Ahmad, I.N. Influence of Space Holder on Rheological Behavior of Copper Feedstocks for Metal Injection Molding. J. Teknol. 2015, 76, 91–95. [Google Scholar] [CrossRef][Green Version]
- Volpe, V.; Pantani, R. Determination of the Effect of Pressure on Viscosity at High Shear Rates by Using an Injection Molding Machine. J. Appl. Polym. Sci. 2017, 135, 45277. [Google Scholar] [CrossRef]
- Fang, W.; He, X.; Zhang, R.; Yang, S.; Qu, X. The Effects of Filling Patterns on the Powder-Binder Separation in Powder Injection Molding. Powder Technol. 2014, 256, 367–376. [Google Scholar] [CrossRef]
- Islam, S.T.; Samanta, S.K.; Das, S.; Chattopadhyay, H. A Numerical Model to Predict the Powder–Binder Separation during Micro-Powder Injection Molding. J. Am. Ceram. Soc. 2022, 105, 4608–4620. [Google Scholar] [CrossRef]
- Demers, V.; Fareh, F.; Turenne, S.; Demarquette, N.R.; Scalzo, O. Experimental Study on Moldability and Segregation of Inconel 718 Feedstocks Used in Low-Pressure Powder Injection Molding. Adv. Powder Technol. 2018, 29, 180–190. [Google Scholar] [CrossRef]
- Ott, J.; Burghardt, A.; Britz, D.; Majauskaite, S.; Mücklich, F. Qualitative and Quantitative Microstructural Analysis of Copper for Sintering Process Optimization in Additive Manufacturing Applications. Pract. Metallogr. 2021, 58, 32–47. [Google Scholar] [CrossRef]
- Singh, G.; Missiaen, J.M.; Bouvard, D.; Chaix, J.M. Copper Additive Manufacturing Using MIM Feedstock: Adjustment of Printing, Debinding, and Sintering Parameters for Processing Dense and Defectless Parts. Int. J. Adv. Manuf. Technol. 2021, 115, 449–462. [Google Scholar] [CrossRef]
- Bai, Y.; Williams, C.B. An Exploration of Binder Jetting of Copper. Rapid Prototyp. J. 2015, 21, 177–185. [Google Scholar] [CrossRef]
- Hötzer, J.; Rehn, V.; Rheinheimer, W.; Hoffmann, M.J.; Nestler, B. Phase-Field Study of Pore-Grain Boundary Interaction. J. Ceram. Soc. Japan 2016, 124, 329–339. [Google Scholar] [CrossRef]
- Mao, Y.; Cai, C.; Zhang, J.; Heng, Y.; Feng, K.; Cai, D.; Wei, Q. Effect of Sintering Temperature on Binder Jetting Additively Manufactured Stainless Steel 316L: Densification, Microstructure Evolution and Mechanical Properties. J. Mater. Res. Technol. 2023, 22, 2720–2735. [Google Scholar] [CrossRef]
- Chen, Z.; Li, B.; Zhang, Q.; Hu, X.; Ding, Y.; Zhu, Z.; Xiao, P. W–Cu Composite with High W Content Prepared by Grading. Materials 2022, 15, 1904. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; German, R.M.; Blaine, D.; Marx, B.; Schlaefer, C. Effects of Residual Carbon Content on Sintering Shrinkage, Microstructure and Mechanical Properties of Injection Molded 17-4 PH Stainless Steel. J. Mater. Sci. 2002, 37, 3573–3583. [Google Scholar] [CrossRef]
- Garcea, S.C.; Wang, Y.; Withers, P.J. X-Ray Computed Tomography of Polymer Composites. Compos. Sci. Technol. 2018, 156, 305–319. [Google Scholar] [CrossRef]
- Asadi-Eydivand, M.; Solati-Hashjin, M.; Farzad, A.; Abu Osman, N.A. Effect of Technical Parameters on Porous Structure and Strength of 3D Printed Calcium Sulfate Prototypes. Robot. Comput. Integr. Manuf. 2016, 37, 57–67. [Google Scholar] [CrossRef]
- Liu, C.; Xia, Z.; Czernuszka, J.T. Design and Development of Three-Dimensional Scaffolds for Tissue Engineering. Chem. Eng. Res. Des. 2007, 85, 1051–1064. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, R.; Qu, X. Optimization and Evaluation of Metal Injection Molding by Using X-Ray Tomography. Mater. Charact. 2015, 104, 107–115. [Google Scholar] [CrossRef]
- Kumar, A.; Bai, Y.; Eklund, A.; Williams, C.B. Effects of Hot Isostatic Pressing on Copper Parts Fabricated via Binder Jetting. Procedia Manuf. 2017, 10, 935–944. [Google Scholar] [CrossRef]
- Connelly, L.M. Introduction to Analysis of Variance. Medsurg. Nurs. 2021, 30, 158–218. [Google Scholar] [CrossRef]
- Dutta, G.; Bose, D. Effect of Sintering Temperature on Density, Porosity and Hardness of a Powder Metallurgy Component. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 121–123. [Google Scholar]
- Cicek, B.; Sun, Y.; Turen, Y.; Ahlatci, H. Investigation of Microstructural Evolution of Gas-Assisted Metal Injection Molded and Sintered Mg-0.5Ca Alloy. Sci. Sinter. 2022, 54, 25–37. [Google Scholar] [CrossRef]
Df | Sum. Square | Mean Square | F Value | p-Value | |
---|---|---|---|---|---|
Position | 2 | 18.44 | 9.22 | 8.708 | 0.000501 |
Error | 57 | 60.35 | 1.06 |
Pair | Means Difference | Significance (at the Level of 0.05) |
---|---|---|
A-B | 0.76 | not significant |
A-C | 1.35 | significant |
B-C | 0.59 | not significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahanan, W.; Fatimah, S.; Song, H.; Lee, E.H.; Kim, D.-J.; Yang, H.W.; Woo, C.H.; Ryu, J.; Widiantara, I.P.; Ko, Y.G. Moldflow Simulation and Characterization of Pure Copper Fabricated via Metal Injection Molding. Materials 2023, 16, 5252. https://doi.org/10.3390/ma16155252
Bahanan W, Fatimah S, Song H, Lee EH, Kim D-J, Yang HW, Woo CH, Ryu J, Widiantara IP, Ko YG. Moldflow Simulation and Characterization of Pure Copper Fabricated via Metal Injection Molding. Materials. 2023; 16(15):5252. https://doi.org/10.3390/ma16155252
Chicago/Turabian StyleBahanan, Warda, Siti Fatimah, Hyunseok Song, Eun Hye Lee, Dong-Ju Kim, Hae Woong Yang, Chang Hoon Woo, Jungho Ryu, I Putu Widiantara, and Young Gun Ko. 2023. "Moldflow Simulation and Characterization of Pure Copper Fabricated via Metal Injection Molding" Materials 16, no. 15: 5252. https://doi.org/10.3390/ma16155252
APA StyleBahanan, W., Fatimah, S., Song, H., Lee, E. H., Kim, D.-J., Yang, H. W., Woo, C. H., Ryu, J., Widiantara, I. P., & Ko, Y. G. (2023). Moldflow Simulation and Characterization of Pure Copper Fabricated via Metal Injection Molding. Materials, 16(15), 5252. https://doi.org/10.3390/ma16155252