Hydrothermal Synthesis of a Cellular NiO Film on Carbon Paper as a Promising Way to Obtain a Hierarchically Organized Electrode for a Flexible Supercapacitor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrothermal Growth of NiO Film
2.2. Characterization of the Obtained Electrode
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nadeem, T.B.; Siddiqui, M.; Khalid, M.; Asif, M. Distributed Energy Systems: A Review of Classification, Technologies, Applications, and Policies. Energy Strategy Rev. 2023, 48, 101096. [Google Scholar] [CrossRef]
- Owaku, T.; Yamamoto, H.; Akisawa, A. Optimal SOFC-CHP Installation Planning and Operation Model Considering Geographic Characteristics of Energy Supply Infrastructure. Energies 2023, 16, 2236. [Google Scholar] [CrossRef]
- McIlwaine, N.; Foley, A.M.; Best, R.; Morrow, D.J.; Kez, D. Al Modelling the Effect of Distributed Battery Energy Storage in an Isolated Power System. Energy 2023, 263, 125789. [Google Scholar] [CrossRef]
- Yadlapalli, R.T.; Alla, R.R.; Kandipati, R.; Kotapati, A. Super Capacitors for Energy Storage: Progress, Applications and Challenges. J. Energy Storage 2022, 49, 104194. [Google Scholar] [CrossRef]
- Benoy, S.M.; Pandey, M.; Bhattacharjya, D.; Saikia, B.K. Recent Trends in Supercapacitor-Battery Hybrid Energy Storage Devices Based on Carbon Materials. J. Energy Storage 2022, 52, 104938. [Google Scholar] [CrossRef]
- Subasinghage, K.; Gunawardane, K.; Padmawansa, N.; Kularatna, N.; Moradian, M. Modern Supercapacitors Technologies and Their Applicability in Mature Electrical Engineering Applications. Energies 2022, 15, 7752. [Google Scholar] [CrossRef]
- Devi, S.B.; Vignesh, V.; Kumar, P.V.; Oh, M.S.; Navamathavan, R. Transport Supercapacitors. In Smart Supercapacitors; Elsevier: Amsterdam, The Netherlands, 2023; pp. 503–534. [Google Scholar]
- Rahman, A.; Myo Aung, K.; Ihsan, S.; Raja Ahsan Shah, R.M.; Al Qubeissi, M.; Aljarrah, M.T. Solar Energy Dependent Supercapacitor System with ANFIS Controller for Auxiliary Load of Electric Vehicles. Energies 2023, 16, 2690. [Google Scholar] [CrossRef]
- Nguyen, D.C.T.; Shin, J.; Kim, S.-K.; Lee, S.-H. Solar-Powered Supercapacitors Integrated with a Shared Electrode. ACS Appl. Energy Mater. 2021, 4, 14014–14021. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, T.; Shen, L.; Liu, Y.; Zhang, D.; Zheng, B.; Gong, K.; Zheng, J.; Gong, X. Recent Progress in the All-solid-state Flexible Supercapacitors. SmartMat 2022, 3, 349–383. [Google Scholar] [CrossRef]
- Wang, W.; Cao, J.; Yu, J.; Tian, F.; Luo, X.; Hao, Y.; Huang, J.; Wang, F.; Zhou, W.; Xu, J.; et al. Flexible Supercapacitors Based on Stretchable Conducting Polymer Electrodes. Polymers 2023, 15, 1856. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Yang, Z.; Zhang, J.; Hou, S.; Hao, C.; Zhang, J. Recent Advances in Flexible Supercapacitors. J. Solid State Electrochem. 2022, 26, 2627–2658. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Parvin, N.; Lai, C.W.; Bahrani, S.; Chiang, W.; Mazraedoost, S. Carbon Substrates for Flexible Supercapacitors and Energy Storage Applications. In Flexible Supercapacitor Nanoarchitectonics; Wiley: Hoboken, NJ, USA, 2021; pp. 95–141. [Google Scholar]
- Mishra, A.; Shetti, N.P.; Basu, S.; Raghava Reddy, K.; Aminabhavi, T.M. Carbon Cloth-based Hybrid Materials as Flexible Electrochemical Supercapacitors. ChemElectroChem 2019, 6, 5771–5786. [Google Scholar] [CrossRef]
- Delbari, S.A.; Ghadimi, L.S.; Hadi, R.; Farhoudian, S.; Nedaei, M.; Babapoor, A.; Sabahi Namini, A.; Van Le, Q.; Shokouhimehr, M.; Shahedi Asl, M.; et al. Transition Metal Oxide-Based Electrode Materials for Flexible Supercapacitors: A Review. J. Alloys Compd. 2021, 857, 158281. [Google Scholar] [CrossRef]
- Guan, M.; Wang, Q.; Zhang, X.; Bao, J.; Gong, X.; Liu, Y. Two-Dimensional Transition Metal Oxide and Hydroxide-Based Hierarchical Architectures for Advanced Supercapacitor Materials. Front. Chem. 2020, 8, 390. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sahoo, S.; Tan, W.K.; Kawamura, G.; Matsuda, A.; Kar, K.K. Microwave-Assisted Thin Reduced Graphene Oxide-Cobalt Oxide Nanoparticles as Hybrids for Electrode Materials in Supercapacitor. J. Energy Storage 2021, 40, 102724. [Google Scholar] [CrossRef]
- Akkinepally, B.; Neelakanta Reddy, I.; Lee, C.; Jo Ko, T.; Srinivasa Rao, P.; Shim, J. Promising Electrode Material of Fe3O4 Nanoparticles Decorated on V2O5 Nanobelts for High-Performance Symmetric Supercapacitors. Ceram. Int. 2023, 49, 6280–6288. [Google Scholar] [CrossRef]
- Ramkumar, R.; Dhakal, G.; Shim, J.-J.; Kim, W.K. NiO/Ni Nanowafer Aerogel Electrodes for High Performance Supercapacitors. Nanomaterials 2022, 12, 3813. [Google Scholar] [CrossRef]
- Dhas, S.D.; Maldar, P.S.; Patil, M.D.; Nagare, A.B.; Waikar, M.R.; Sonkawade, R.G.; Moholkar, A.V. Synthesis of NiO Nanoparticles for Supercapacitor Application as an Efficient Electrode Material. Vacuum 2020, 181, 109646. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, C.; Liang, J.; Wu, W. Electrode Materials and Device Architecture Strategies for Flexible Supercapacitors in Wearable Energy Storage. J. Mater. Chem. A 2021, 9, 8099–8128. [Google Scholar] [CrossRef]
- Mohd Abdah, M.A.A.; Azman, N.H.N.; Kulandaivalu, S.; Sulaiman, Y. Review of the Use of Transition-Metal-Oxide and Conducting Polymer-Based Fibres for High-Performance Supercapacitors. Mater. Des. 2020, 186, 108199. [Google Scholar] [CrossRef]
- Fan, Z.; Huang, X.; Tan, C.; Zhang, H. Thin Metal Nanostructures: Synthesis, Properties and Applications. Chem. Sci. 2015, 6, 95–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lokhande, P.E.; Chavan, U.S.; Pandey, A. Materials and Fabrication Methods for Electrochemical Supercapacitors: Overview. Electrochem. Energy Rev. 2020, 3, 155–186. [Google Scholar] [CrossRef]
- Kalinina, M.V.; Morozova, L.V.; Egorova, T.L.; Arsent’ev, M.Y.; Drozdova, I.A.; Shilova, O.A. Synthesis and Physicochemical Properties of a Solid Oxide Nanocomposite Based on a ZrO2–Y2O3–Gd2O3–MgO System. Glas. Phys. Chem. 2016, 42, 505–511. [Google Scholar] [CrossRef]
- Egorova, T.L.; Kalinina, M.V.; Simonenko, E.P.; Simonenko, N.P.; Kopitsa, G.P.; Glumov, O.V.; Mel’nikova, N.A.; Murin, I.V.; Almásy, L.; Shilova, O.A. Study of the Effect of Methods for Liquid-Phase Synthesis of Nanopowders on the Structure and Physicochemical Properties of Ceramics in the CeO2–Y2O3 System. Russ. J. Inorg. Chem. 2017, 62, 1275–1285. [Google Scholar] [CrossRef]
- Egorova, T.L.; Kalinina, M.V.; Simonenko, E.P.; Simonenko, N.P.; Shilova, O.A.; Sevastyanov, V.G.; Kuznetsov, N.T. Liquid-Phase Synthesis and Physicochemical Properties of Xerogels, Nanopowders and Thin Films of the CeO2–Y2O3 System. Russ. J. Inorg. Chem. 2016, 61, 1061–1069. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Kalinina, M.V.; Simonenko, N.P.; Simonenko, E.P.; Khamova, T.V.; Shilova, O.A. Synthesis and Physicochemical Properties of Nanopowders and Ceramics in a CeO2–Gd2O3 System. Glas. Phys. Chem. 2018, 44, 314–321. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Simonenko, E.P.; Sevast’yanov, V.G.; Kuznetsov, N.T. Synthesis of One-Dimensional Nanostructures of CeO2–10% Y2O3 Oxide by Programmed Coprecipitation in the Presence of Polyvinyl Alcohol. Russ. J. Inorg. Chem. 2019, 64, 1475–1481. [Google Scholar] [CrossRef]
- Hadi, N.H.; Somalu, M.R.; Samat, A.A.; Muchtar, A.; Baharuddin, N.A.; Anwar, M. A Review on the Preparation of Anode Materials and Anode Films for Solid Oxide Fuel Cell Applications. Int. J. Energy Res. 2021, 45, 14357–14388. [Google Scholar] [CrossRef]
- Rangasamy, V.S.; Vanhulsel, A. Synthesis and Processing of Battery Materials: Giving It the Plasma Touch. Batter. Supercaps 2021, 4, 692–716. [Google Scholar] [CrossRef]
- Calimli, M.H.; Karahan, T.G.; Khan, A.; Sen, F. General Synthesis Methods of Inorganic Materials for Supercapacitors. In Handbook of Supercapacitor Materials; Wiley: Hoboken, NJ, USA, 2021; pp. 187–203. [Google Scholar]
- Ullah, E.; Ullah Shah, M.Z.; Ahmad, S.A.; Sajjad, M.; Khan, S.; Alzahrani, F.M.; Yahya, A.E.M.; Eldin, S.M.; Akkinepally, B.; Shah, A.; et al. Hydrothermal Assisted Synthesis of Hierarchical SnO2 Micro Flowers with CdO Nanoparticles Based Membrane for Energy Storage Applications. Chemosphere 2023, 321, 138004. [Google Scholar] [CrossRef]
- Nandagudi, A.; Nagarajarao, S.H.; Santosh, M.S.; Basavaraja, B.M.; Malode, S.J.; Mascarenhas, R.J.; Shetti, N.P. Hydrothermal Synthesis of Transition Metal Oxides, Transition Metal Oxide/Carbonaceous Material Nanocomposites for Supercapacitor Applications. Mater. Today Sustain. 2022, 19, 100214. [Google Scholar] [CrossRef]
- Yadav, S.; Sharma, A. Importance and Challenges of Hydrothermal Technique for Synthesis of Transition Metal Oxides and Composites as Supercapacitor Electrode Materials. J. Energy Storage 2021, 44, 103295. [Google Scholar] [CrossRef]
- Liang, R.; Du, Y.; Xiao, P.; Cheng, J.; Yuan, S.; Chen, Y.; Yuan, J.; Chen, J. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Nanomaterials 2021, 11, 1248. [Google Scholar] [CrossRef] [PubMed]
- Forouzandeh, P.; Kumaravel, V.; Pillai, S.C. Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts 2020, 10, 969. [Google Scholar] [CrossRef]
- Ramachandran, T.; Hamed, F.; Raji, R.K.; Majhi, S.M.; Barik, D.; Kumar, Y.A.; Jauhar, R.M.; Pachamuthu, M.P.; Vijayalakshmi, L.; Ansar, S. Enhancing Asymmetric Supercapacitor Performance with NiCo2O4–NiO Hybrid Electrode Fabrication. J. Phys. Chem. Solids 2023, 180, 111467. [Google Scholar] [CrossRef]
- Upadhyay, S.; Kumar, N.; Tanwar, N.; Priya, R.; Chetana, S.; Joshi, N.C.; Hossain, I.; Pandey, O.P. Hydrothermal Synthesis of Nickel Oxide Nanoflowers as a Blend of 1D and 2D Morphologies for Its Improved OER Activity and Supercapacitance. J. Mater. Sci. Mater. Electron. 2023, 34, 1253. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, K.; Li, W.; Xu, K. Structure-Designed Synthesis of Hierarchical NiCo2O4@NiO Composites for High-Performance Supercapacitors. J. Colloid Interface Sci. 2019, 556, 386–391. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Q.; Sun, L.; Li, N.; Wang, X.; Wang, Q.; Zhang, D.; Wang, B. Hydrothermal Synthesis of 3D Hierarchical Ordered Porous Carbon from Yam Biowastes for Enhanced Supercapacitor Performance. Chem. Eng. Sci. 2022, 252, 117514. [Google Scholar] [CrossRef]
- Ali, A.; Ammar, M.; Mukhtar, A.; Ahmed, T.; Ali, M.; Waqas, M.; Amin, M.N.; Rasheed, A. 3D NiO Nanowires@NiO Nanosheets Core-Shell Structures Grown on Nickel Foam for High Performance Supercapacitor Electrode. J. Electroanal. Chem. 2020, 857, 113710. [Google Scholar] [CrossRef]
- Fan, J.; Lu, J.; Sha, Z.; Zuo, W.; Fei, X.; Zhu, M. Conformally Anchoring Nanocatalyst onto Quartz Fibers Enables Versatile Microreactor Platforms for Continuous-Flow Catalysis. Sci. China Chem. 2021, 64, 1596–1604. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Kang, X.; Chen, G.; Li, Y. Synthesis the Flower-like N-C/NiO Nanocomposites by One-Pot Hydrothermal Method as Efficient Electrocatalyst for Methanol Oxidation in Alkaline Electrolyte. Colloids Surf. A Physicochem. Eng. Asp. 2021, 629, 127466. [Google Scholar] [CrossRef]
- Wan, X.; Yuan, M.; Tie, S.; Lan, S. Effects of Catalyst Characters on the Photocatalytic Activity and Process of NiO Nanoparticles in the Degradation of Methylene Blue. Appl. Surf. Sci. 2013, 277, 40–46. [Google Scholar] [CrossRef]
- Madhura, T.R.; Kumar, G.G.; Ramaraj, R. Reduced Graphene Oxide Supported 2D-NiO Nanosheets Modified Electrode for Urea Detection. J. Solid State Electrochem. 2020, 24, 3073–3081. [Google Scholar] [CrossRef]
- Zhou, L.; Zeng, W.; Li, Y. A Facile One-Step Hydrothermal Synthesis of a Novel NiO/ZnO Nanorod Composite and Its Enhanced Ethanol Sensing Property. Mater. Lett. 2019, 254, 92–95. [Google Scholar] [CrossRef]
- Liu, B.; Yang, H.; Zhao, H.; An, L.; Zhang, L.; Shi, R.; Wang, L.; Bao, L.; Chen, Y. Synthesis and Enhanced Gas-Sensing Properties of Ultralong NiO Nanowires Assembled with NiO Nanocrystals. Sens. Actuators B Chem. 2011, 156, 251–262. [Google Scholar] [CrossRef]
- Miao, B.; Zeng, W.; Lin, L.; Xu, S. Characterization and Gas-Sensing Properties of NiO Nanowires Prepared through Hydrothermal Method. Phys. E Low-Dimens. Syst. Nanostructures 2013, 52, 40–45. [Google Scholar] [CrossRef]
- Yu, Y.; Xia, Y.; Zeng, W.; Liu, R. Synthesis of Multiple Networked NiO Nanostructures for Enhanced Gas Sensing Performance. Mater. Lett. 2017, 206, 80–83. [Google Scholar] [CrossRef]
- Chung, Y.; Park, H.; Lee, E.; Kim, S.-H.; Kim, D.-J. Communication—Gas Sensing Behaviors of Electrophoretically Deposited Nickel Oxide Films from Morphologically Tailored Particles. J. Electrochem. Soc. 2016, 163, B624–B626. [Google Scholar] [CrossRef]
- Dudorova, D.A.; Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Volkov, I.A.; Simonenko, E.P.; Kuznetsov, N.T. Hydrothermal Synthesis of Nickel Oxide and Its Application in the Additive Manufacturing of Planar Nanostructures. Molecules 2023, 28, 2515. [Google Scholar] [CrossRef]
- Cai, X.; Hou, S.; Wu, H.; Lv, Z.; Fu, Y.; Wang, D.; Zhang, C.; Kafafy, H.; Chu, Z.; Zou, D. All-Carbon Electrode-Based Fiber-Shaped Dye-Sensitized Solar Cells. Phys. Chem. Chem. Phys. 2012, 14, 125–130. [Google Scholar] [CrossRef]
- Spadafora, E.J.; Saint-Aubin, K.; Celle, C.; Demadrille, R.; Grévin, B.; Simonato, J.-P. Work Function Tuning for Flexible Transparent Electrodes Based on Functionalized Metallic Single Walled Carbon Nanotubes. Carbon N. Y. 2012, 50, 3459–3464. [Google Scholar] [CrossRef]
- Shiraishi, M.; Ata, M. Work Function of Carbon Nanotubes. Carbon N. Y. 2001, 39, 1913–1917. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Dudorova, D.A.; Simonenko, E.P.; Sevastyanov, V.G.; Kuznetsov, N.T. Triethanolamine-Assisted Hydrothermal Synthesis of Hierarchically Organized Nickel Oxide Particles. Russ. J. Inorg. Chem. 2022, 67, 622–627. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Grafov, O.Y.; Simonenko, E.P.; Kuznetsov, N.T. Synthesis of ((CeO2)0.8(Sm2O3)0.2)@NiO Core-Shell Type Nanostructures and Microextrusion Printing of a Composite Anode Based on Them. Materials 2022, 15, 8918. [Google Scholar] [CrossRef]
- Waseem, S.; Dubey, P.; Singh, M.; Sundriyal, S.; Maheshwari, P.H. Chemically Oxidized Carbon Paper as a Free-Standing Electrode for Supercapacitor: An Insight into Surface and Diffusion Contribution. ChemistrySelect 2023, 8, e202204377. [Google Scholar] [CrossRef]
- Zhang, C.; Qian, L.; Zhang, K.; Yuan, S.; Xiao, J.; Wang, S. Hierarchical Porous Ni/NiO Core–Shells with Superior Conductivity for Electrochemical Pseudo-Capacitors and Glucose Sensors. J. Mater. Chem. A 2015, 3, 10519–10525. [Google Scholar] [CrossRef]
- Manibalan, G.; Murugadoss, G.; Kuppusami, P.; Kandhasamy, N.; Rajesh Kumar, M. Synthesis of Heterogeneous NiO Nanoparticles for High-Performance Electrochemical Supercapacitor Application. J. Mater. Sci. Mater. Electron. 2021, 32, 5945–5954. [Google Scholar] [CrossRef]
- Xiao, H.; Yao, S.; Liu, H.; Qu, F.; Zhang, X.; Wu, X. NiO Nanosheet Assembles for Supercapacitor Electrode Materials. Prog. Nat. Sci. Mater. Int. 2016, 26, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Kolathodi, M.S.; Palei, M.; Natarajan, T.S. Electrospun NiO Nanofibers as Cathode Materials for High Performance Asymmetric Supercapacitors. J. Mater. Chem. A 2015, 3, 7513–7522. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, S.; Zhang, E.; Wei, J.; Suo, H.; Zhao, C.; Zhao, X. One-Pot Synthesis of Nickel Oxide–Carbon Composite Microspheres on Nickel Foam for Supercapacitors. J. Mater. Sci. 2012, 47, 2182–2187. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Simonenko, E.P.; Kuznetsov, N.T. Hydrothermal Synthesis of a Cellular NiO Film on Carbon Paper as a Promising Way to Obtain a Hierarchically Organized Electrode for a Flexible Supercapacitor. Materials 2023, 16, 5208. https://doi.org/10.3390/ma16155208
Simonenko TL, Simonenko NP, Gorobtsov PY, Simonenko EP, Kuznetsov NT. Hydrothermal Synthesis of a Cellular NiO Film on Carbon Paper as a Promising Way to Obtain a Hierarchically Organized Electrode for a Flexible Supercapacitor. Materials. 2023; 16(15):5208. https://doi.org/10.3390/ma16155208
Chicago/Turabian StyleSimonenko, Tatiana L., Nikolay P. Simonenko, Philipp Yu. Gorobtsov, Elizaveta P. Simonenko, and Nikolay T. Kuznetsov. 2023. "Hydrothermal Synthesis of a Cellular NiO Film on Carbon Paper as a Promising Way to Obtain a Hierarchically Organized Electrode for a Flexible Supercapacitor" Materials 16, no. 15: 5208. https://doi.org/10.3390/ma16155208
APA StyleSimonenko, T. L., Simonenko, N. P., Gorobtsov, P. Y., Simonenko, E. P., & Kuznetsov, N. T. (2023). Hydrothermal Synthesis of a Cellular NiO Film on Carbon Paper as a Promising Way to Obtain a Hierarchically Organized Electrode for a Flexible Supercapacitor. Materials, 16(15), 5208. https://doi.org/10.3390/ma16155208