Effects of Plasma Treatment on the Surface and Photocatalytic Properties of Nanostructured SnO2–SiO2 Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Samples
2.2. Electron Microscopy
2.3. X-ray Phase Analysis
2.4. UV-Vis Test
2.5. X-ray Photoelectron Spectroscopy
2.6. Study of the Photocatalytic Properties
3. Results and Discussion
3.1. Structure and Phase Composition
3.2. XPS Results
3.3. Photocatalytic Properties
- A growing amorphization of the material. It is well known that increasing the degree of amorphism in the material adversely affects the photocatalytic properties of the material [45]. This is presumably linked to localized states appearing in the band gap which serve as centers for recombination of photogenerated charge carriers [46];
- The formation of vacancies in the oxygen sub-lattice at the near-surface layer. It was found in previous works [33] that their presence on the surface of tin dioxide improves the photocatalytic activity of the material. This type of vacancy is a trapping center for photogenerated holes, which prevents a recombination process. Also, oxygen vacancies are centers for capturing particles from the surrounding atmosphere, for example, dissolved molecular oxygen. This type of defect appears at maximum levels when the material is treated with O2 plasma. This is probably due to the interaction of the atomic charged form of oxygen with lattice oxygen, the generation of molecular oxygen and its desorption;
- The formation of heterojunctions of SnO2–SnO, where the photogenerated charge carriers are efficiently separated [47]. Thus, the resulting value of the rate constant for the reaction of photocatalytic oxidation is determined by the dominant factor in the combination of the factors.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qi, K.; Cheng, B.; Yu, J.; Ho, W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 2017, 727, 792–820. [Google Scholar] [CrossRef]
- Zaleska, A. Doped-TiO2: A review. Recent Pat. Eng. 2008, 2, 157–164. [Google Scholar] [CrossRef]
- Peleyeju, M.G.; Viljoen, E.L. WO3-based catalysts for photocatalytic and photoelectrocatalytic removal of organic pollutants from water–A review. J. Water Proc. Eng. 2021, 40, 101930. [Google Scholar] [CrossRef]
- Manojkumar, P.; Pranav, S.; Lokeshkumar, E.; Shishir, R.; Nasiruddin, U.; Rameshbabu, N. Development of surface modified titanium alloy as a promising photocatalyst for textile waste water treatment. J. Alloys Compd. 2023, 952, 169906. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, X.; Jiang, Q.; Zheng, Z.; Song, Z.; Zhao, Z.; Xie, Z.; Kuang, Q. Constructing oxide/sulfide in-plane heterojunctions with enlarged internal electric field for efficient CO2 photoreduction. Appl. Catal. B Environ. 2021, 297, 120394. [Google Scholar] [CrossRef]
- Henkel, K.; Haeberle, J.; Müller, K.; Janowitz, C.; Schmeißer, D. Preparation, properties and electronic structure of SnO2. In Single Crystals of Electronic Materials. Woodhead Publ. 2019, 547–572. [Google Scholar] [CrossRef]
- Kim, H.; Yang, D.S.; Um, J.H.; Balasubramanian, M.; Yoo, J.; Kim, H.; Park, S.B.; Kim, J.M. Comparative study of bulk and nano-structured mesoporous SnO2 electrodes on the electrochemical performances for next generation Li rechargeable batteries. J. Power Sources 2019, 413, 241–249. [Google Scholar] [CrossRef]
- Wrighton, M.S.; Morse, D.L.; Ellis, A.B.; Ginley, D.S.; Abrahamson, H.B. Photoassisted electrolysis of water by ultraviolet irradiation of an antimony doped stannic oxide electrode. J. Am. Chem. Soc. 1976, 98, 44–48. [Google Scholar] [CrossRef]
- Sun, C.; Yang, J.; Xu, M.; Cui, Y.; Ren, W.; Zhang, J.; Zhao, H.; Liang, B. Recent intensification strategies of SnO2-based photocatalysts: A review. Chem. Eng. J. 2022, 427, 131564. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, W.; Li, Q. SnO2 as a gas sensor in detection of volatile organic compounds: A review. Sens. Actuators A Phys. 2022, 346, 113845. [Google Scholar] [CrossRef]
- Fazio, E.; Spadaro, S.; Corsaro, C.; Neri, G.; Leonardi, S.G.; Neri, F.; Lavanya, N.; Sekar, C.; Donato, N.; Neri, G. Metal-oxide based nanomaterials: Synthesis, characterization and their applications in electrical and electrochemical sensors. Sensors 2021, 21, 2494. [Google Scholar] [CrossRef]
- Parashar, M.; Shukla, V.K.; Singh, R. Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applications. J. Mater. Sci. Mater. Electron. 2020, 31, 3729–3749. [Google Scholar] [CrossRef]
- Du, H.; Wang, H.; Yao, P.; Wang, J.; Sun, Y. In2O3 nanofibers surface modified by low-temperature RF plasma and their gas sensing properties. Mater. Chem. Phys. 2018, 215, 316–326. [Google Scholar] [CrossRef]
- Rao, C.H.; Kothuru, A.; Singh, A.P.; Varaprasad, B.K.S.V.L.; Goel, S. Plasma treatment and copper metallization for reliable plated-through-holes in microwave PCBS for space electronic packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 1921–1928. [Google Scholar] [CrossRef]
- Williams, P.F. (Ed.) . Plasma Processing of Semiconductors; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Jadwiszczak, J.; Kelly, D.J.; Guo, J.; Zhou, Y.; Zhang, H. Plasma Treatment of Ultrathin Layered Semiconductors for Electronic Device Applications. ACS Appl. Electron. Mater. 2021, 3, 1505–1529. [Google Scholar] [CrossRef]
- Kumar, A.; Gutal, A.P.; Sharma, N.; Kumar, D.; Zhang, G.; Kim, H.; Kumar, P.; Paranjothy, M.; Kumar, M.; Strano, M.S. Investigations of Vacancy-Assisted Selective Detection of NO2 Molecules in Vertically Aligned SnS2. ACS Sens. 2023, 8, 1357–1367. [Google Scholar] [CrossRef]
- Shao, S.; Zhang, L.; Zhang, J.; Ma, B.; Kim, H.W.; Kim, S.S. Three-Dimensional van der Waals Heterostructure-Based Nanocages as Supersensitive 3-Hydroxy-2-butanone Gas Sensors at Room Temperature. ACS Sens. 2023, 8, 228–242. [Google Scholar] [CrossRef]
- Huang, H.; Tan, O.K.; Lee, Y.C.; Tran, T.D.; Tse, M.S.; Yao, X. Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment. Appl. Phys. Lett. 2005, 87, 163123. [Google Scholar] [CrossRef]
- Sysoev, V.V.; Kiselev, I.; Trouillet, V.; Bruns, M. Enhancing the gas selectivity of single-crystal SnO2:Pt thin-film chemiresistor microarray by SiO2 membrane coating. Sens. Actuators B Chem. 2013, 185, 59–69. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, S.; Zhang, S.; Wang, R.; Wang, K. Preparation and visible-light photocatalytic activity of N-doped TiO2 by plasma-assisted sol-gel method. Catal. Today 2019, 337, 37–43. [Google Scholar] [CrossRef]
- Savastenko, N.A.; Filatova, I.I.; Lyushkevich, V.A.; Maskevich, S.A. A Comparative Study of Photocatalytic Activity of ZnO-Based Photocatalysts Treated by Dielectric Barrier Discharge Plasma. In High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes; Begell House: Danbury, CT, USA, 2020; Volume 24. [Google Scholar] [CrossRef]
- Takeuchi, K.; Nakamura, I.; Matsumoto, O.; Sugihara, S.; Ando, M.; Ihara, T. Preparation of visible-light-responsive titanium oxide photocatalysts by plasma treatment. Chem. Lett. 2000, 29, 1354–1355. [Google Scholar] [CrossRef]
- Rahimnejad, S.; He, J.H.; Pan, F.; Chen, W.; Wu, K.; Xu, G.Q. Enhancement of the photocatalytic efficiency of WO3 nanoparticles via hydrogen plasma treatment. Mater. Res. Express 2014, 1, 045044. [Google Scholar] [CrossRef]
- Gulevich, D.; Rumyantseva, M.; Gerasimov, E.; Krivetskiy, V.; Shatalova, T.; Khmelevsky, N.; Gaskov, A. Nanocomposites SnO2/SiO2 for CO Gas Sensors: Microstructure and Reactivity in the Interaction with the Gas Phase. Materials 2019, 12, 1096. [Google Scholar] [CrossRef] [Green Version]
- Korotcenkov, G.; Cho, B.K. Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sens. Actuators B 2017, 244, 182–210. [Google Scholar] [CrossRef]
- Pronin, I.A.; Goryacheva, M.V. Principles of structure formation and synthesis models produced by the sol–gel method SiO2–MexOy nanocomposites. Surf. Coat. Technol. 2013, 235, 835–840. [Google Scholar] [CrossRef]
- Komolov, A.S.; Schaumburg, K.; Moeller, P.J.; Monakhov, V.V. Characterization of Conducting Molecular Films on Silicon: Auger Electron Spectroscopy, X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy and Surface Photovoltage. Appl. Surf. Sci. 1999, 142, 591–597. [Google Scholar] [CrossRef]
- Komolov, A.S.; Lazneva, E.F.; Gerasimova, N.B.; Panina, Y.A.; Sobolev, V.S.; Koroleva, A.V.; Pshenichnyuk, S.A.; Asfandiarov, N.L.; Modelli, A.; Handke, B.; et al. Conduction band electronic states of ultrathin layers of thiophene/phenylene co-oligomers on an oxidized silicon surface. J. Electron Spectr. Rel. Phen. 2019, 235, 40–45. [Google Scholar] [CrossRef]
- Mäntele, W.; Deniz, E. UV–VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 965–968. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the 'Debye-Scherrer equation'. Nat. Nanotech 2011, 6, 534. [Google Scholar] [CrossRef]
- Morar, J.F.; Himpsel, F.J.; Hollinger, G.; Jordon, J.L.; Hughes, G.; McFeely, F.R. C 1s excitation studies of diamond (111). II. Unoccupied surface states. Phys. Rev. B 1986, 33, 1346. [Google Scholar] [CrossRef]
- Wang, H.; Dou, K.; Teoh, W.Y.; Zhan, Y.; Hung, T.F.; Zhang, F.; Xu, J.; Zhang, R.; Rogach, A.L. Engineering of facets, band structure, and gas-sensing properties of hierarchical Sn2+-doped SnO2 nanostructures. Adv. Funct. Mater. 2013, 23, 4847–4853. [Google Scholar] [CrossRef]
- Sherwood, P.M.A. Valence-band spectra of tin oxides interpreted by Xα calculations. Phys. Rev. B 1990, 41, 10151. [Google Scholar] [CrossRef]
- Akgul, F.A.; Gumus, C.; Ali, O.E.; Farha, A.H.; Akgul, G.; Ufuktepe, Y.; Liu, Z. Structural and electronic properties of SnO2. J. Alloys Compd. 2013, 579, 50–56. [Google Scholar] [CrossRef]
- De Padova, P.; Larciprete, R.; Ottaviani, C.; Quaresima, C.; Perfetti, P.; Borsella, E.; Astaldi, C.; Comicioli, C.; Crotti, C.; Matteucci, M.; et al. Synchrotron radiation photoelectron spectroscopy of the O (2s) core level as a tool for monitoring the reducing effects of ion bombardment on SnO2 thin films. Appl. Surf. Sci. 1996, 104, 349–353. [Google Scholar] [CrossRef]
- Kwoka, M.; Ottaviano, L.; Passacantando, M.; Santucci, S.; Czempik, G.; Szuber, J. XPS study of the surface chemistry of L-CVD SnO2 thin films after oxidation. Thin Solid Film. 2005, 490, 36–42. [Google Scholar] [CrossRef]
- Jimenez, V.M.; Mejias, J.A.; Espinós, J.P.; González-Elipe, A.R. Interface effects for metal oxide thin films deposited on another metal oxide II. SnO2 deposited on SiO2. Surf. Sci. 1996, 366, 545–555. [Google Scholar] [CrossRef]
- Meng, F.; Liao, Z.; Xing, C.; Yuan, Z.; Zhang, R.; Zhu, H.; Li, J. Preparation of SnO2/SiO2 nanocomposites by sol-gel method for enhancing the gas sensing performance to triethylamine. J. Alloys Compd. 2022, 893, 162189. [Google Scholar] [CrossRef]
- Pronin, I.A.; Averin, I.A.; Karmanov, A.A.; Yakushova, N.D.; Komolov, A.S.; Lazneva, E.F.; Sychev, M.M.; Moshnikov, V.A.; Korotcenkov, G. Control over the Surface Properties of Zinc Oxide Powders via Combining Mechanical, Electron Beam, and Thermal Processing. Nanomaterials 2022, 12, 1924. [Google Scholar] [CrossRef]
- El-Fiqi, A. Sol—Gel synthesis, properties and protein loading/delivery capacity of hollow bioactive glass nanospheres with large hollow cavity and mesoporous shell. Front. Mater. Sci. 2022, 16, 220608. [Google Scholar] [CrossRef]
- Jarzebski, Z.M.; Marton, J.P. Physical properties of SnO2 materials: I. preparation and defect structure. J. Electrochem. Soc. 1976, 123, 199. [Google Scholar] [CrossRef]
- Simakov, V.; Voroshilov, A.; Grebennikov, A.; Kucherenko, N.; Yakusheva, O.; Kisin, V. Gas identification by quantitative analysis of conductivity-vs-concentration dependence for SnO2 sensors. Sens. Actuators B 2009, 137, 456–461. [Google Scholar] [CrossRef]
- Szuber, J.; Czempik, G. Photoemission yield study of the fermi level position on the clean SnO2 (110) surface exposed to oxygen. Vacuum 1997, 48, 289–291. [Google Scholar] [CrossRef]
- Pronin, I.A.; Kaneva, N.V.; Bozhinova, A.S.; Averin, I.A.; Papazova, K.I.; Dimitrov, D.T.; Moshnikov, V.A. Photocatalytic oxidation of pharmaceuticals on thin nanostructured zinc oxide films. Kinet. Catal. 2014, 55, 167–171. [Google Scholar] [CrossRef]
- Mott, N.F.; Davis, E.A.; Street, R.A. States in the gap and recombination in amorphous semiconductors. Philos. Mag. 1975, 32, 961–996. [Google Scholar] [CrossRef]
- Santhi, K.; Rani, C.; Karuppuchamy, S. Synthesis and characterization of a novel SnO/SnO2 hybrid photocatalyst. J. Alloys Compd. 2016, 662, 102–107. [Google Scholar] [CrossRef]
- Godinho, K.G.; Walsh, A.; Watson, G.W. Energetic and electronic structure analysis of intrinsic defects in SnO2. J. Phys. Chem. C 2009, 113, 439–448. [Google Scholar] [CrossRef]
Treatment Parameter | Treatment Mode | |||
---|---|---|---|---|
Power of high-frequency source of inductively coupled plasma, W | PL1 | PL2 | PL3 | PL4 |
250 | 250 | 500 | 250 | |
Power of additional high-frequency source, W | 0 | 0 | 0 | 10 |
Gas | N2 | O2 | N2 | N2 |
Sample | PL0 | PL1 | PL2 | PL3 | PL4 |
---|---|---|---|---|---|
D, nm | 1.6 | 1.1 | 1.2 | 1.4 | 0.9 |
Sample | (Sn), at. % | (Si), at. % | (O), at. % | |||||
---|---|---|---|---|---|---|---|---|
PL0 | 29.3 | 5.8 | 64.9 | 5.1 | 0.84 | 0.54 | 0.15 | 1.1 |
PL1 | 31.3 | 3.9 | 64.8 | 8.0 | 0.89 | 0.54 | 0.15 | 1.1 |
PL2 | 28.0 | 7.6 | 64.4 | 3.7 | 0.69 | 0.62 | 0.39 | 0.8 |
PL3 | 31.6 | 5.5 | 62.9 | 5.7 | 0.89 | 0.56 | 0.21 | 1.6 |
PL4 | 28.7 | 9.7 | 61.6 | 3.0 | 0.83 | 0.56 | 0.21 | 1.9 |
Sample | k, ×10–4 min–1 cm–2 |
PL0 | 4.8 ± 0.05 |
PL1 | 4.8 ± 0.05 |
PL2 | 5.5 ± 0.05 |
PL3 | 4.0 ± 0.05 |
PL4 | 4.1 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pronin, I.A.; Sigaev, A.P.; Komolov, A.S.; Zhizhin, E.V.; Karmanov, A.A.; Yakushova, N.D.; Kyashkin, V.M.; Nishchev, K.N.; Sysoev, V.V.; Goel, S.; et al. Effects of Plasma Treatment on the Surface and Photocatalytic Properties of Nanostructured SnO2–SiO2 Films. Materials 2023, 16, 5030. https://doi.org/10.3390/ma16145030
Pronin IA, Sigaev AP, Komolov AS, Zhizhin EV, Karmanov AA, Yakushova ND, Kyashkin VM, Nishchev KN, Sysoev VV, Goel S, et al. Effects of Plasma Treatment on the Surface and Photocatalytic Properties of Nanostructured SnO2–SiO2 Films. Materials. 2023; 16(14):5030. https://doi.org/10.3390/ma16145030
Chicago/Turabian StylePronin, Igor A., Alexander P. Sigaev, Alexei S. Komolov, Evgeny V. Zhizhin, Andrey A. Karmanov, Nadezhda D. Yakushova, Vladimir M. Kyashkin, Konstantin N. Nishchev, Victor V. Sysoev, Sanket Goel, and et al. 2023. "Effects of Plasma Treatment on the Surface and Photocatalytic Properties of Nanostructured SnO2–SiO2 Films" Materials 16, no. 14: 5030. https://doi.org/10.3390/ma16145030