Size- and Chirality-Dependent Structural and Mechanical Properties of Single-Walled Phenine Nanotubes
Abstract
1. Introduction
2. Simulation Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, J.; Itkis, M.E.; Yu, A.; Bekyarova, E.; Zhao, B.; Haddon, R.C. Continuous spinning of a single-walled carbon nanotube−nylon composite fiber. J. Am. Chem. Soc. 2005, 127, 3847–3854. [Google Scholar] [CrossRef]
- Yang, X.; Tang, H.; Cao, K.; Song, H.; Sheng, W.; Wu, Q. Templated-assisted one-dimensional silica nanotubes: Synthesis and applications. J. Mater. Chem. 2011, 21, 6122–6135. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Ren, Z.; Chou, T.-W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912. [Google Scholar] [CrossRef]
- Qian, D.; Wagner, G.J.; Liu, W.K.; Yu, M.-F.; Ruoff, R.S. Mechanics of carbon nanotubes. Appl. Mech. Rev. 2002, 55, 495–533. [Google Scholar] [CrossRef]
- Xiang, J.; Yu, X.-Y.; Paik, U. General synthesis of vanadium-based mixed metal oxides hollow nanofibers for high performance lithium-ion batteries. J. Power Sources 2016, 329, 190–196. [Google Scholar] [CrossRef]
- Wang, C.; Takei, K.; Takahashi, T.; Javey, A. Carbon nanotube electronics—Moving forward. Chem. Soc. Rev. 2013, 42, 2592–2609. [Google Scholar] [CrossRef]
- Peng, L.-M.; Zhang, Z.; Qiu, C. Carbon nanotube digital electronics. Nat. Electron. 2019, 2, 499–505. [Google Scholar] [CrossRef]
- Raychowdhury, A.; Roy, K. Carbon nanotube electronics: Design of high-performance and low-power digital circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 2391–2401. [Google Scholar] [CrossRef]
- Madani, S.Y.; Naderi, N.; Dissanayake, O.; Tan, A.; Seifalian, A.M. A new era of cancer treatment: Carbon nanotubes as drug delivery tools. Int. J. Nanomed. 2011, 6, 2963–2979. [Google Scholar]
- Choudhary, M.; Sharma, A.; Aravind Raj, S.; Sultan, M.T.H.; Hui, D.; Shah, A.U.M. Contemporary review on carbon nanotube (CNT) composites and their impact on multifarious applications. J. Am. Chem. Soc. 2022, 11, 2632–2660. [Google Scholar] [CrossRef]
- Vigolo, B.; Pénicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290, 1331–1334. [Google Scholar] [CrossRef]
- Iijima, T.; Oshima, H.; Hayashi, Y.; Suryavanshi, U.B.; Hayashi, A.; Tanemura, M.J.D.; Materials, R. In-situ observation of carbon nanotube fiber spinning from vertically aligned carbon nanotube forest. Diam. Relat. Mater. 2012, 24, 158–160. [Google Scholar] [CrossRef]
- Jee, M.H.; Choi, J.U.; Park, S.H.; Jeong, Y.G.; Baik, D.H. Influences of tensile drawing on structures, mechanical, and electrical properties of wet-spun multi-walled carbon nanotube composite fiber. Macromol. Res. 2012, 20, 650–657. [Google Scholar] [CrossRef]
- Liu, C.; Fan, Y.Y.; Liu, M.; Cong, H.T.; Cheng, H.M.; Dresselhaus, M.S. Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature. Science 1999, 286, 1127–1129. [Google Scholar] [CrossRef]
- Ajayan, P.M. Nanotubes from Carbon. Chem. Rev. 1999, 99, 1787–1800. [Google Scholar] [CrossRef] [PubMed]
- García-Hernández, E.; Chigo-Anota, E. Structural defects on (5,5) single-walled carbon nanotubes: Impact on their electronic properties and chemical reactivity from a DFT perspective. Physica E Low Dimens. Syst. 2021, 134, 114874. [Google Scholar] [CrossRef]
- Collins, P.G.; Hersam, M.; Arnold, M.; Martel, R.; Avouris, P. Current Saturation and Electrical Breakdown in Multiwalled Carbon Nanotubes. Phys. Rev. Lett. 2001, 86, 3128–3131. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.G.; Arnold, M.S.; Avouris, P. Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown. Science 2001, 292, 706–709. [Google Scholar] [CrossRef]
- Liao, A.; Alizadegan, R.; Ong, Z.-Y.; Dutta, S.; Xiong, F.; Hsia, K.J.; Pop, E. Thermal dissipation and variability in electrical breakdown of carbon nanotube devices. Phys. Rev. B 2010, 82, 205406. [Google Scholar] [CrossRef]
- Jaehyun, C.; Kyong-Hoon, L.; Junghoon, L.; Diego, T.; George, C.S. Multi-walled carbon nanotubes experiencing electrical breakdown as gas sensors. Nanotechnology 2004, 15, 1596. [Google Scholar]
- Buh, G.H.; Hwang, J.H.; Jeon, E.K.; So, H.M.; Lee, J.O.; Kong, K.J.; Chang, H. On-Chip Electrical Breakdown of Metallic Nanotubes for Mass Fabrication of Carbon-Nanotube-Based Electronic Devices. IEEE Trans. Nanotechnol. 2008, 7, 624–627. [Google Scholar]
- Liu, J.; Wang, C.; Tu, X.; Liu, B.; Chen, L.; Zheng, M.; Zhou, C. Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat. Commun. 2012, 3, 1199. [Google Scholar] [CrossRef]
- Sanchez-Valencia, J.R.; Dienel, T.; Gröning, O.; Shorubalko, I.; Mueller, A.; Jansen, M.; Amsharov, K.; Ruffieux, P.; Fasel, R. Controlled synthesis of single-chirality carbon nanotubes. Nature 2014, 512, 61–64. [Google Scholar] [CrossRef]
- Liu, B.; Wu, F.; Gui, H.; Zheng, M.; Zhou, C. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes. ACS Nano 2017, 11, 31–53. [Google Scholar] [CrossRef]
- Tomada, J.; Dienel, T.; Hampel, F.; Fasel, R.; Amsharov, K. Combinatorial design of molecular seeds for chirality-controlled synthesis of single-walled carbon nanotubes. Nat. Commun. 2019, 10, 3278. [Google Scholar] [CrossRef]
- Liu, B.; Wang, C.; Liu, J.; Che, Y.; Zhou, C. Aligned carbon nanotubes: From controlled synthesis to electronic applications. Nanoscale 2013, 5, 9483–9502. [Google Scholar] [CrossRef]
- Sun, Z.; Ikemoto, K.; Fukunaga, T.M.; Koretsune, T. Finite phenine nanotubes with periodic vacancy defects. Science 2019, 363, 151–155. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680. [Google Scholar] [CrossRef]
- Yu, M.-F.; Files, B.S.; Arepalli, S.; Ruoff, R.S. Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties. Phys. Rev. Lett. 2000, 84, 5552–5555. [Google Scholar] [CrossRef]
- Tang, C.; Guo, W.; Chen, C. Mechanism for Superelongation of Carbon Nanotubes at High Temperatures. Phys. Rev. Lett. 2008, 100, 175501. [Google Scholar] [CrossRef]
- Hao, X.; Qiang, H.; Xiaohu, Y. Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamics simulation. Compos. Sci. Technol. 2008, 68, 1809–1814. [Google Scholar] [CrossRef]
- Xin, H.; Han, Q.; Yao, X.-H. Buckling and axially compressive properties of perfect and defective single-walled carbon nanotubes. Carbon 2007, 45, 2486–2495. [Google Scholar] [CrossRef]
- Xin, H.; Han, Q. The Strain Rate Effect of Perfect and Defective Single-Walled Carbon Nanotubes Under Axial Compression. J. Comput. Theor. Nanosci. 2012, 9, 371–378. [Google Scholar] [CrossRef]
- Faria, B.; Silvestre, N. Mechanical properties of phenine nanotubes. Extreme Mech. Lett. 2022, 56, 101893. [Google Scholar] [CrossRef]
- Yu, H.T.; Yang, M.; Zhu, W.; Chang, T.; Jiang, J.W. Diameter-dependent polygonal cross section for holey phenine nanotubes. Nanotechnology 2019, 31, 085702. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mat. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef]
- Zhan, H.; Zhang, G.; Tan, V.B.C.; Cheng, Y.; Bell, J.M.; Zhang, Y.-W.; Gu, Y. From brittle to ductile: A structure dependent ductility of diamond nanothread. Nanoscale 2016, 8, 11177–11184. [Google Scholar] [CrossRef]
- Zhao, H.; Min, K.; Aluru, N.R. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 2009, 9, 3012–3015. [Google Scholar] [CrossRef]
- Carpenter, C.; Maroudas, D.; Ramasubramaniam, A. Mechanical properties of irradiated single-layer graphene. Appl. Phys. Lett. 2013, 103, 013102. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, L.; Wang, R.; Wang, C.; Tang, C. One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes. Materials 2022, 15, 8220. [Google Scholar] [CrossRef]
- Jensen, B.D.; Wise, K.E.; Odegard, G.M. The effect of time step, thermostat, and strain rate on ReaxFF simulations of mechanical failure in diamond, graphene, and carbon nanotube. J. Comput. Chem. 2015, 36, 1587–1596. [Google Scholar] [CrossRef]
- Liu, X.; Pan, D.; Hong, Y.; Guo, W. Bending Poisson Effect in Two-Dimensional Crystals. Phys. Rev. Lett. 2014, 112, 205502. [Google Scholar] [CrossRef]
- Feliciano, J.; Tang, C.; Zhang, Y.; Chen, C. Aspect ratio dependent buckling mode transition in single-walled carbon nanotubes under compression. J. Appl. Phys. 2011, 109, 084323. [Google Scholar] [CrossRef]
- Zhan, H.; Zhang, G.; Bell, J.M.; Tan, V.B.C.; Gu, Y. High density mechanical energy storage with carbon nanothread bundle. Nat. Commun. 2020, 11, 1905. [Google Scholar] [CrossRef]
Diameter | 16.50 Å | 24.75 Å | 33.00 Å | 41.25 Å | 61.88 Å | Unit |
---|---|---|---|---|---|---|
Ultimate stress under tension | 36.36 | 34.80 | 34.17 | 34.43 | 34.72 | GPa |
Ultimate strain under tension | 0.209 | 0.186 | 0.179 | 0.186 | 0.191 | - |
Young’s modulus | 239 | 219 | 210 | 199 | 197 | GPa |
Energy storage density | 34,488 | 28,248 | 24,984 | 26,784 | 27,792 | KJ/Kg |
Critical stress under compression | 9.30 | 2.38 | 1.69 | 1.78 | 1.48 | GPa |
Critical strain under compression | 0.04 | 0.03 | 0.036 | 0.039 | 0.023 | - |
Diameter | 11.91 Å | 23.82 Å | 33.34 Å | 42.87 Å | 61.92 Å | Unit |
---|---|---|---|---|---|---|
Ultimate stress under tension | 30.78 | 29.34 | 29.30 | 29.87 | 29.79 | GPa |
Ultimate strain under tension | 0.205 | 0.16 | 0.145 | 0.155 | 0.155 | - |
Young’s modulus | 114 | 160 | 173 | 166 | 159 | GPa |
Energy storage density | 22,296 | 17,568 | 17,544 | 18,132 | 17,196 | KJ/Kg |
Critical stress under compression | 4.74 | 2.52 | 2.13 | 2.07 | 0.95 | GPa |
Critical strain under compression | 0.27 | 0.05 | 0.03 | 0.04 | 0.03 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, R.; Wang, L.; Xia, J.; Wang, C.; Tang, C. Size- and Chirality-Dependent Structural and Mechanical Properties of Single-Walled Phenine Nanotubes. Materials 2023, 16, 4706. https://doi.org/10.3390/ma16134706
Liu Y, Wang R, Wang L, Xia J, Wang C, Tang C. Size- and Chirality-Dependent Structural and Mechanical Properties of Single-Walled Phenine Nanotubes. Materials. 2023; 16(13):4706. https://doi.org/10.3390/ma16134706
Chicago/Turabian StyleLiu, Yanjun, Ruijie Wang, Liya Wang, Jun Xia, Chengyuan Wang, and Chun Tang. 2023. "Size- and Chirality-Dependent Structural and Mechanical Properties of Single-Walled Phenine Nanotubes" Materials 16, no. 13: 4706. https://doi.org/10.3390/ma16134706
APA StyleLiu, Y., Wang, R., Wang, L., Xia, J., Wang, C., & Tang, C. (2023). Size- and Chirality-Dependent Structural and Mechanical Properties of Single-Walled Phenine Nanotubes. Materials, 16(13), 4706. https://doi.org/10.3390/ma16134706