MnPc Films Deposited by Ultrasonic Spray Pyrolysis at Low Temperatures: Optical, Morphological and Structural Properties
Abstract
:1. Introduction
2. Experimental Work
2.1. Synthesis of MnPc Films
2.2. Characterization of the Films
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mcmurry, J. Synthetic and Biodegradable Polymers: Physical Properties, 7th ed.; Cengage Learrning: Boston, MA, USA, 2008; ISBN 0840054440. [Google Scholar]
- Autino, J.C.; Romanelli, G.P.; Ruiz, D.M. Introduction to Organic Chemistry; Editorial de la Universidad Nacional de La Plata (EDULP): Buenos Aires, Argentina, 2020. [Google Scholar] [CrossRef]
- Liu, Z.T.; Kwok, H.S.; Djurišić, A.B. The optical functions of metal phthalocyanines. J. Phys. D Appl. Phys. 2004, 37, 678–688. [Google Scholar] [CrossRef]
- Sevim, A.M.; Yenilmez, H.Y.; Aydemir, M.; Koca, A.; Bayir, Z.A. Synthesis, electrochemical and spectroelectrochemical properties of novel phthalocyanine complexes of manganese, titanium and indium. Electrochim. Acta 2014, 137, 602–615. [Google Scholar] [CrossRef]
- Bayliss, S.M.; Heutz, S.; Rumbles, G.; Jones, T.S. Thin film properties and surface morphology of metal free phthalocyanine films grown by organic molecular beam deposition. Phys. Chem. Chem. Phys. 1999, 1, 3673–3676. [Google Scholar] [CrossRef]
- Ziminov, A.; Ramsh, S.; Terukov, E.I.; Trapeznikova, I.N.; Shamanin, V.V.; Yurre, T.A. Correlation dependences in infrared spectra of metal phthalocyanines. Semiconductors 2006, 40, 1131–1136. [Google Scholar] [CrossRef]
- Harbeck, S.; Mack, H. Experimental and Theoretical Investigations on the IR and Raman Spectra for CuPc and TiOPc. Univ. Tubingen. 2013, 1–19. Available online: http://hdl.handle.net/10900/49961 (accessed on 18 April 2023).
- Zhu, J.; Shen, Y.; Gu, F.; Tao, J.; Zhang, J. Optical and photoelectric properties of manganese(II) phthalocyanine epoxy derivative. Mater. Lett. 2007, 61, 3086–3088. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Zhang, Y.; Jiang, J. Theoretical investigation of the molecular, electronic structures and vibrational spectra of a series of first transition metal phthalocyanines. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2007, 67, 1232–1246. [Google Scholar] [CrossRef]
- Hamam, K.J.; Alomari, M.I. A study of the optical band gap of zinc phthalocyanine nanoparticles using UV–Vis spectroscopy and DFT function. Appl. Nanosci. 2017, 7, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.; Zeki Yildiz, S. Substituted manganese phthalocyanines as bleach catalysts: Synthesis, characterization and the investigation of de-aggregation behavior with LiCl in solutions. Res. Chem. Intermed. 2019, 45, 687–707. [Google Scholar] [CrossRef]
- Günsel, A.; Kandaz, M.; Yakuphanoglu, F.; Farooq, W.A. Extraction of electronic parameters of organic diode fabricated with NIR absorbing functional manganase phthalocyanine organic semiconductor. Synth. Met. 2011, 161, 1477–1482. [Google Scholar] [CrossRef]
- Rajesh, K.R.; Menon, C.S. Optical studies of manganese phthalocyanine thin films. Mater. Lett. 2001, 51, 266–269. [Google Scholar] [CrossRef]
- Li, D.; Ge, S.; Sun, G.; He, Q.; Huang, B.; Tian, G.; Lu, W.; Li, G.; Chen, Y.; An, S.; et al. A novel and green route for solvothermal synthesis of manganese phthalocyanine crystals. Dye. Pigment. 2015, 113, 200–204. [Google Scholar] [CrossRef]
- Cook, M.J. Phthalocyanine thin films. Pure Appl. Chem. 1999, 71, 2145–2151. [Google Scholar] [CrossRef]
- Liao, M.S.; Scheiner, S. Electronic structure and bonding in metal phthalocyanines, metal = Fe, Co, Ni, Cu, Zn, Mg. J. Chem. Phys. 2001, 114, 9780–9791. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.S.; Park, S.Y.; Hwang, J.Y.; Choi, H.J.; Zhang, Z.; Wei, Z.; Wan, M.; Umadevi, G.; Ponnusamy, V.; Paramsivam, M.; et al. Bandgap determination of chemically doped polyaniline materials from reflectance measurements. Prog. Polym. Sci. 2002, 3, 1939–1947. [Google Scholar] [CrossRef]
- Tackley, D.R.; Dent, G.; Smith, W.E. Phthalocyanines: Structure and vibrations. Phys. Chem. Chem. Phys. 2001, 3, 1419–1426. [Google Scholar] [CrossRef]
- Saini, G.S.S.; Singh, S.; Kaur, S.; Kumar, R.; Sathe, V.; Tripathi, S.K. Zinc phthalocyanine thin film and chemical analyte interaction studies by density functional theory and vibrational techniques. J. Phys. Condens. Matter. 2009, 21, 225006. [Google Scholar] [CrossRef]
- Sin, S. Deposition Techniques and Characterization of Thin Films. J. 3d Print. Appl. 2009, 1, 1–24. [Google Scholar]
- Seshan, K. Hlandbook of Thin Film Deposition Processes Techniques: Principles Methods Equipments Applications; Schuegraf, K.K., Ed.; Noyes Publications: Norwich, NY, USA, 1988. [Google Scholar]
- Nieto, K. Physical properties of nanostructured films of CdS, ln2S3 and CdSe semiconductors obtained by the chemical bath technique. Cent. Investig. y Estud. Av. 2018, vii, 28. Available online: http://creativecommons.org/licenses/by-nc-nd/4 (accessed on 18 April 2023).
- ENieto, J.F. Thin Films: Manufacture and Applications. Bull. Span. Soc. Ceram. Glass 1994, 33, 245–258. [Google Scholar]
- Castro, S.R. Ultrasonic Pyrolytic Spray Technique For Obtaining Cu-Doped SnS Thin Films (SnS:Cu) for Photovoltaic Applications. Master’s Thesis, National Technology of Mexico, Acapulco, Mexico, 2018. [Google Scholar]
- Betancur-Granados, N.; Tobón, J.I.; Restrepo-Baena, O.J. General study of the aerosol pyrolysis synthesis method in flame. Matéria 2021, 26, 1–20. [Google Scholar] [CrossRef]
- Farooq, S.; Ngaini, Z.; Farooq, S. Manufacturing and Design of Smart Polymer Composites. In Smart Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2020; pp. 27–84. [Google Scholar] [CrossRef]
- Bhawna; Roy, M.; Vikram; Borkar, H.; Alam, A.; Aslam, M. Spontaneous anion-exchange synthesis of optically active mixed-valence Cs2Au2I6 perovskites from layered CsAuCl4 perovskites. Chem. Commun. 2021, 57, 1478–1481. [Google Scholar] [CrossRef] [PubMed]
- Krajewska, C.J.; Kavanagh, S.R.; Zhang, L.; Kubicki, D.J.; Dey, K.; Gałkowski, K.; Grey, C.P.; Stranks, S.D.; Walsh, A.; Scanlon, D.O.; et al. Enhanced visible light absorption in layered Cs3Bi2Br9 through mixed-valence Sn(ii)/Sn(iv) doping. Chem. Sci. 2021, 12, 14686–14699. [Google Scholar] [CrossRef] [PubMed]
- Cranston, R.R.; Lessard, B.H. Metal phthalocyanines: Thin-film formation, microstructure, and physical properties. RSC Adv. 2021, 11, 21716–21737. [Google Scholar] [CrossRef] [PubMed]
- Seoudi, R.; El-Bahy, G.S.; El Sayed, Z.A. Ultraviolet and visible spectroscopic studies of phthalocyanine and its complexes thin films. Opt. Mater. 2006, 29, 304–312. [Google Scholar] [CrossRef]
- Meng, L.; Wang, K.; Han, Y.; Yao, Y.; Gao, P.; Huang, C.; Zhang, W.; Xu, F. Synthesis, structure, and optical properties of manganese phthalocyanine thin films and nanostructures. Prog. Nat. Sci. Mater. Int. 2017, 27, 329–332. [Google Scholar] [CrossRef]
- Günsel, A.; Kocabaş, S.; Bilgiçli, A.T.; Güney, S.; Kandaz, M. Synthesis, photophysical and electrochemical properties of water-soluble phthalocyanines bearing 8-hydroxyquinoline-5-sulfonicacid derivatives. J. Lumin. 2016, 176, 387–396. [Google Scholar] [CrossRef]
- Erdoğmuş, A.; Akinbulu, I.A.; Nyokong, T. Synthesis and electrochemical properties of new cobalt and manganese phthalocyanine complexes tetra-substituted with 3,4-(methylendioxy)-phenoxy. Polyhedron 2010, 29, 2352–2363. [Google Scholar] [CrossRef]
- Marshell, J.F.T. Raman spectrum and band assignments for metal–free phthalocyanine (H2Pc). Mater. Sci. Res. India 2010, 7, 221–224. [Google Scholar] [CrossRef]
- Neamtu, M.; Nadejde, C.; Brinza, L.; Dragos, O.; Gherghel, D.; Paul, A. Iron phthalocyanine-sensitized magnetic catalysts for BPA photodegradation. Sci. Rep. 2020, 10, 5376. [Google Scholar] [CrossRef] [Green Version]
- Abood, M.A.; Ai-essa, I.M. The effect of conductive polymer on the Structural and Surface Morphology Analysis of NiPcTs:PEDOT: PSS Blend. Elixir Cryst. Res. 2017, 104, 45814–45817. [Google Scholar]
- Hussein, M.T.; Aadim, K.A.; Hassan, E.K. Structural and Surface Morphology Analysis of Copper Phthalocyanine Thin Film Prepared by Pulsed Laser Deposition and Thermal Evaporation Techniques. Adv. Mater. Phys. Chem. 2016, 06, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Touka, N.; Benelmadjat, H.; Boudine, B.; Halimi, O.; Sebais, M. Copper phthalocyanine nanocrystals embedded into polymer host: Preparation and structural characterization. J. Assoc. Arab. Univ. Basic. Appl. Sci. 2013, 13, 52–56. [Google Scholar] [CrossRef]
- Feng, X.; Ding, X.; Chen, L.; Wu, Y.; Liu, L.; Addicoat, M.; Irle, S.; Dong, Y.; Jiang, D. Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity. Sci. Rep. 2016, 6, 32944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, J.; Ahmad, I.; Jung, M.; Seo, J.-M.; Yu, S.-Y.; Noh, H.-J.; Kim, Y.H.; Shin, H.-J.; Baek, J.-B. Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework. Commun. Chem. 2020, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- El-Nahass, M.M.; Atta, A.A.; El-Sayed, H.E.A.; El-Zaidia, E.F.M. Structural and optical properties of thermal evaporated magnesium phthalocyanine (MgPc) thin films. Appl. Surf. Sci. 2008, 254, 2458–2465. [Google Scholar] [CrossRef]
- Liu, G.; Liu, S.; Lu, Q.; Sun, H.; Xiu, Z. BiVO4/cobalt phthalocyanine (CoPc) nanofiber heterostructures: Synthesis, characterization and application in photodegradation of methylene blue. RSC Adv. 2014, 4, 53402–53406. [Google Scholar] [CrossRef]
- Ji, X.; Zou, T.; Gong, H.; Wu, Q.; Qiao, Z.; Wu, W.; Wang, H. Cobalt phthalocyanine nanowires: Growth, crystal structure, and optical properties. Cryst. Res. Technol. 2016, 51, 154–159. [Google Scholar] [CrossRef]
- Rojas, A.; de Juan, D.; Valencia, A. Molecular Interactions: Learning from Protein Complexes. In Silico Technologies in Drug Target Identification and Validation; CRC Press: Boca Raton, FL, USA, 2006; pp. 225–243. [Google Scholar] [CrossRef]
- Williams, L.D. Water—The Liquid. Part 1. Molecular Interactions. 2019, pp. 1–59, Chemistry & Biochemistry, Georgia Tech. Available online: https://williams.chemistry.gatech.edu/structure/molecular_interactions/mol_int.html (accessed on 18 April 2023).
- Kangsabanik, J.; Borkar, H.; Bhawna; Siddiqui, M.S.; Aslam, M.; Alam, A. Origin of High Nonradiative Recombination and Relevant Optoelectronic Properties of Ba2Bi1+xNb1−xO6: Candidate for Photo(electro)catalysis and Photovoltaic Applications? Adv. Opt. Mater. 2020, 8, 2000901. [Google Scholar] [CrossRef]
- Mao, L.; Teicher, S.M.L.; Stoumpos, C.C.; Kennard, R.M.; DeCrescent, R.A.; Wu, G.; Schuller, J.A.; Chabinyc, M.L.; Cheetham, A.K.; Seshadri, R. Chemical and Structural Diversity of Hybrid Layered Double Perovskite Halides. J. Am. Chem. Soc. 2019, 141, 19099–19109. [Google Scholar] [CrossRef] [Green Version]
- Sridevi, B.R.; Hoskeri, P.A.; Joseph, C.M. Effect of annealing on the optical, structural and electrochromic properties of vacuum evaporated manganese phthalocyanine thin films. Thin Solid Films 2021, 723, 138584. [Google Scholar] [CrossRef]
v (cm−1) | Description | Vibration Modes |
---|---|---|
526 | Si Substrate | |
591 | Ring NM Benzene | Stretching in the ring Stretching Elongation |
677 | Benzene | Strain |
751 | CNm,CNM Pyrrole | Tension Elongation |
831 | CH | Out-of-plane bending |
950 | NM, CNmC Isoindole | In-plane bending Deformation |
976 | NMCNmC Isoindole | In-plane bending Deformation |
1102 | CH Isoindole NM | In-plane bending Tension |
1133 | CH | In-plane bending |
1190 | CẟH Pyrrole, NM | In-plane bending Tension |
1306 | Isoindole NM CH | Tension In-plane bending |
1340 | Isoindole NM CH CNmC | Tension In-plane bending |
1394 | Pyrrole CẟCẟNM CNmCCẟH | Tension In-plane bending |
1430 | CH CβCβ | In-plane bending Tension |
1518 | CNmC Pyrrole CH | Tension Elongation In-plane bending |
1593 | Benzene CẟH | Tension In-plane bending |
1610 | Benzene | Ring tension |
2Ɵ (°) | h | k | l | Crystalline System |
---|---|---|---|---|
A1 Film | ||||
8.34 | 1 | 0 | 1 | Monoclinic |
15.44 | 1 | 0 | 2 | |
21.72 | 1 | 1 | 3 | |
33.11 | 2 | 2 | 0 | |
52.79 | 4 | 2 | 2 | |
54.82 | 5 | 1 | 1 | |
56.40 | 5 | 1 | 1 | |
A21 Film | ||||
7.93 | 0 | 2 | 0 | Monoclinic |
12.9 | 2 | 1 | 0 | |
16.29 | 1 | 0 | 2 | |
A22 Film | ||||
7.5 | 0 | 1 | 1 | Monoclinic |
26.9 | −3 | 1 | 2 | |
29.6 | −3 | 1 | 5 | |
33.3 | 2 | 2 | 0 | |
40.74 | 4 | 0 | 0 | |
51.6 | 4 | 2 | 2 | |
54.5 | 4 | 2 | 2 | |
56.1 | 5 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna Zempoalteca, A.; Hernández de la Luz, J.Á.D.; Luna Flores, A.; Luna López, J.A.; Benítez Lara, A. MnPc Films Deposited by Ultrasonic Spray Pyrolysis at Low Temperatures: Optical, Morphological and Structural Properties. Materials 2023, 16, 4357. https://doi.org/10.3390/ma16124357
Luna Zempoalteca A, Hernández de la Luz JÁD, Luna Flores A, Luna López JA, Benítez Lara A. MnPc Films Deposited by Ultrasonic Spray Pyrolysis at Low Temperatures: Optical, Morphological and Structural Properties. Materials. 2023; 16(12):4357. https://doi.org/10.3390/ma16124357
Chicago/Turabian StyleLuna Zempoalteca, Anayantzi, José Álvaro David Hernández de la Luz, Adan Luna Flores, José Alberto Luna López, and Alfredo Benítez Lara. 2023. "MnPc Films Deposited by Ultrasonic Spray Pyrolysis at Low Temperatures: Optical, Morphological and Structural Properties" Materials 16, no. 12: 4357. https://doi.org/10.3390/ma16124357
APA StyleLuna Zempoalteca, A., Hernández de la Luz, J. Á. D., Luna Flores, A., Luna López, J. A., & Benítez Lara, A. (2023). MnPc Films Deposited by Ultrasonic Spray Pyrolysis at Low Temperatures: Optical, Morphological and Structural Properties. Materials, 16(12), 4357. https://doi.org/10.3390/ma16124357