Energy Harvesting of Deionized Water Droplet Flow over an Epitaxial Graphene Film on a SiC Substrate
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Minshchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Fan, S.; Lee, S.; Joo, M.K.; Lee, Y.H. High–mobility junction field–effect transistor via graphene/MoS2 heterointerface. Sci. Rep. 2020, 10, 13101. [Google Scholar] [CrossRef] [PubMed]
- Melnikova-Kominkova, Z.; Jurkova, K.; Vales, V.; Drogowska-Horná, K.; Frank, O.; Kalbac, M. Strong and efficient doping of monolayer MoS2 by a graphene electrode. Phys. Chem. Chem. Phys. 2019, 21, 25700–25706. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.W.; Hung, S.C.; Yang, M.D.; Yeh, C.W.; Wu, C.H.; Chi, G.C.; Ren, F.; Pearton, S.J. Oxygen sensors made by monolayer graphene under room temperature. Appl. Phys. Lett. 2011, 99, 243502. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Paronyan, T.M.; Harutyunyan, A.R. Sub-ppt gas detection with pristine graphene. Appl. Phys. Lett. 2012, 101, 053119. [Google Scholar] [CrossRef]
- Wu, H.; Li, Q.; Bu, X.; Liu, W.; Cao, G.; Li, X.; Wang, X. Gas sensing performance of graphene-metal contact after thermal annealing. Sens. Actuators B 2019, 282, 408–416. [Google Scholar] [CrossRef]
- Li, H.; Han, X.; Childress, A.S.; Rao, A.M.; Koley, G. Investigation of carrier density and mobility variations in graphene caused by surface adsorbates. Physica E 2019, 107, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Ohno, Y.; Maehashi, K.; Yamashiro, Y.; Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 2009, 9, 3318–3322. [Google Scholar] [CrossRef]
- Ohno, Y.; Maehashi, K.; Matsumoto, K. Label–free biosensors based on aptamer–modified graphene field–effect transistors. J. Am. Chem. Soc. 2010, 132, 18012–18013. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Wu, Y.; Guo, M.; Gu, C.; Dai, C.; Kong, D.; Wang, Y.; Zhang, C.; Qu, D.; et al. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 2022, 6, 276–285. [Google Scholar] [CrossRef]
- Rodrigues, T.; Mishyn, V.; Leroux, Y.R.; Butruille, L.; Woitrain, E.; Barras, A.; Aspermair, P.; Happy, H.; Kleber, C.; Boukherroub, R.; et al. Highly performing graphene-based field effect transistor for the differentiation between mild-moderate-severe myocardial injury. Nano Today 2022, 43, 101391. [Google Scholar] [CrossRef]
- Zaccariotto, G.C.; Silva, M.K.L.; Rocha, G.S.; Cesarino, I. A novel method for the detection of SARS-CoV-2 based on graphene-impedimetric immunosensor. Materials 2021, 14, 4230. [Google Scholar] [CrossRef]
- Leve, Z.D.; Iwuoha, E.I.; Ross, N. Thesynergistic properties and gas sensing performance of functionalized graphene-based sensors. Materials 2022, 15, 1326. [Google Scholar] [CrossRef]
- Yang, W.; Cai, X.; Guo, S.; Wen, L.; Sun, Z.; Shang, R.; Shi, X.; Wang, J.; Chen, H.; Li, Z. A high performance triboelectric nanogenerator based on MXene/graphene oxide electrode for glucose detection. Materials 2022, 16, 841. [Google Scholar] [CrossRef]
- Wong, L.J.; Kaminer, I.; Ilic, O.; Joannopoulos, J.D.; Soljačić, M. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photonics 2016, 10, 46–52. [Google Scholar] [CrossRef]
- Kaminer, I.; Katan, Y.T.; Buljan, H.; Shen, Y.; Ilic, O.; López, J.J.; Wong, L.J.; Joannopoulos, J.D.; Soljačić, M. Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene. Nat. Commun. 2016, 7, ncomms11880. [Google Scholar] [CrossRef] [Green Version]
- Beltaos, A.; Bergren, A.J.; Bosnick, K.; Pekas, N.; Lane, S.; Cui, K.; Matković, A.; Meldrum, A. Visible light emission in graphene field effect transistors. Nano Futures 2017, 1, 025004. [Google Scholar] [CrossRef]
- Kataoka, T.; Fukunaga, F.; Murakami, N.; Sugiyama, Y.; Ohno, Y.; Nagase, M. Far-infrared emission from graphene on SiC by current injection. Jpn. J. Appl. Phys. 2022, 61, SD1019. [Google Scholar] [CrossRef]
- Mattern, F.; Flörkemeier, C. Vom Internet der Computer zum Internet der Dinge. Informatik-Spektrum 2010, 33, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Alam, T. A reliable communication framework and its use in Internet of things (IoT). Int. J. Sci. Res. Com. Sci. Eng. Infor. Technol. 2018, 3, 450–456. [Google Scholar]
- Liu, J.; Dai, L.; Baur, J.W. Multiwalled carbon nanotubes for flow-induced voltage generation. J. Appl. Phys. 2007, 101, 064312. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, Y.P. Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 6374–6376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Kim, D.; Kim, S.; Han, C.S. Flow-induced voltage generation in high-purity metallic and semiconducting carbon nanotubes. Appl. Phys. Lett. 2011, 99, 104103. [Google Scholar] [CrossRef]
- Zhong, H.; Wu, Z.; Li, X.; Xu, W.; Xu, S.; Zhang, S.; Xu, Z.; Chen, H.; Lin, S. Graphene based two dimensional hybrid nanogenerator for concurrently harvesting energy from sunlight and water flow. Carbon 2016, 105, 199–204. [Google Scholar] [CrossRef]
- Kwak, S.S.; Lin, S.; Lee, J.H.; Ryu, H.; Kim, T.Y.; Zhong, H.; Chen, H.; Kim, S.W. Triboelectrification-induced large electric power generation from a single moving droplet on graphene/polytetrafluoroethylene. ACS Nano 2016, 10, 7297–7302. [Google Scholar] [CrossRef]
- Zhong, H.; Xia, J.; Wang, F.; Chen, H.; Wu, H.; Lin, S. Graphene-piezoelectric material heterostructure for harvesting energy from water flow. Adv. Funct. Mater. 2017, 27, 1604226. [Google Scholar] [CrossRef]
- Okada, T.; Kalita, G.; Tanemura, M.; Yamashita, I.; Meyyappan, M.; Samukawa, S. Role of doped nitrogen in graphene for flow-induced power generation. Adv. Eng. Mater. 2018, 20, 1800387. [Google Scholar] [CrossRef]
- Park, D.; Won, S.; Kim, K.S.; Jung, J.Y.; Choi, J.Y.; Nah, J. The influence of substrate-dependent triboelectric charging of graphene on the electric potential generation by the flow of electrolyte droplets. Nano Energy 2018, 54, 66–72. [Google Scholar] [CrossRef]
- Okada, T.; Kalita, G.; Tanemura, M.; Yamashita, I.; Meyyappan, M.; Samukawa, S. Nitrogen doping effect on flow-induced voltage generation from graphene-water interface. Appl. Phys. Lett. 2018, 112, 023902. [Google Scholar] [CrossRef]
- Fei, W.; Shen, C.; Zhang, S.; Chen, H.; Li, L.; Guo, G. Waving potential at volt level by a pair of graphene sheets. Nano Energy 2019, 60, 656–660. [Google Scholar] [CrossRef]
- Li, C.; Tian, Z.; Liang, L.; Yin, S.; Shen, P.K. Electricity Generation from Capillary-Driven Ionic Solution Flow in a Three-Dimensional Graphene Membrane. ACS Appl. Mater. Interfaces 2019, 11, 4922–4929. [Google Scholar] [CrossRef]
- Zhen, Z.; Li, Z.; Zhao, X.; Zhong, Y.; Huang, M.; Zhu, H. A non-covalent cation-π interaction-based humidity-driven electric nanogenerator prepared with salt decorated wrinkled graphene. Nano Energy 2019, 62, 189–196. [Google Scholar] [CrossRef]
- Kang, J.; Chae, J.; Shu, C.; Jung, W. A study on the effects of the number of layers of graphene for flow-induced power generation on graphene/polytetrafluoroethylene membranes. Mater. Lett. 2019, 255, 126530. [Google Scholar] [CrossRef]
- Zhen, Z.; Li, Z.; Zhao, X.; He, Y.; Zhong, Y.; Huang, M.; Wang, M.; Zhu, H. A wrinkled graphene and ionic liquid based electric generator for the sea energy harvesting. 2D Materials 2019, 6, 045040. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Mai, V.P.; Yang, R.J. Effects of electrode placement position and tilt angles of a platform on voltage induced by NaCl electrolyte flowing over graphene wafer. Appl. Energy 2020, 261, 114435. [Google Scholar] [CrossRef]
- Kuriya, K.; Ochiai, K.; Kalita, G.; Tanemura, M.; Komiya, A.; Kikugawa, G.; Ohara, T.; Yamashita, I.; Ohuchi, F.S.; Meyyappan, M.; et al. Output density quantification of electricity generation by flowing deionized water on graphene. Appl. Phys. Lett. 2020, 117, 123905. [Google Scholar] [CrossRef]
- Cai, H.; Guo, Y.; Guo, W. Synergistic effect of substrate and ion-containing water in graphene based hydrovoltaic generators. Nano Energy 2021, 84, 105939. [Google Scholar] [CrossRef]
- Li, C.; Yang, D.; Hasan, S.W.; Zhang, X.; Tian, Z.Q.; Shen, P.K. Electricity generation from ionic solution flowing through packed three-dimensional graphene powders. Nanotechnology 2021, 32, 355401. [Google Scholar] [CrossRef]
- Kong, H.; Si, P.; Li, M.; Qiu, X.; Liu, J.; Wang, X.; Wang, Q.; Li, L.; Wang, Y. Enhanced electricity generation from graphene microfluidic channels for self-powered flexible sensors. Nano Lett. 2022, 22, 3266–3274. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Shen, H.; Chen, J.; Li, X.; Li, Y. Metal-free synthesis of boron-doped graphene glass by hot-filament chemical vapor deposition for wave energy harvesting. ACS Appl. Mater. Interfaces 2020, 12, 2805–2815. [Google Scholar] [CrossRef]
- Král, P.; Shapiro, M. Nanotube electron drag in flowing liquids. Phys. Rev. Lett. 2001, 86, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sood, A.K.; Kumar, N. Carbon Nanotube Flow Sensors. Science 2003, 299, 1042–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Li, X.; Yu, J.; Zhang, Z.; Zhou, J.; Guo, W. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 2014, 9, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Mitsuno, T.; Taniguchi, Y.; Ohno, Y.; Nagase, M. Ion sensitivity of large-area epitaxial graphene film on SiC substrate. Appl. Phys. Lett. 2017, 111, 213103. [Google Scholar] [CrossRef]
- Nakai, H.; Akiyama, D.; Taniguchi, Y.; Kishinobu, I.; Wariishi, H.; Ohno, Y.; Nagase, M.; Ikeda, T.; Tabata, A.; Nagamune, H. Charge-independent protein adsorption characteristics of epitaxial graphene field-effect transistor on SiC substrate. J. Appl. Phys. 2021, 130, 074502. [Google Scholar] [CrossRef]
- Yamasaki, S.; Nakai, H.; Murayama, K.; Ohno, Y.; Nagase, M. Electron transfer characteristics of amino adsorption on epitaxial graphene FETs on SiC substrates. AIP Adv. 2022, 12, 105310. [Google Scholar] [CrossRef]
- Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A.A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen. Phys. Rev. Lett. 2009, 103, 246804. [Google Scholar] [CrossRef] [Green Version]
- Aritsuki, T.; Nakashima, T.; Kobayashi, K.; Ohno, Y.; Nagase, M. Epitaxial graphene on SiC formed by the surface structure control technique. Jpn. J. Appl. Phys. 2016, 55, 06GF03. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-J.; Zhang, D.; Wang, H.; Chen, Z.; Ou, N.; Wang, P.; Wang, D.; Wang, X.; Yang, J. Molecule-driven nanoenergy generator. Small 2019, 15, 1804146. [Google Scholar] [CrossRef]
- Nagase, M.; Hibino, H.; Kageshima, H.; Yamaguchi, H. Contact conductance measurement of locally suspended graphene on SiC. Appl. Phys. Express 2010, 3, 045101. [Google Scholar] [CrossRef]
- Kobayashi, K.; Tanabe, S.; Tao, T.; Okumura, T.; Nakashima, T.; Aritsuki, T.; O, R.S.; Nagase, M. Resistivity anisotropy measured using four probes in epitaxial graphene on silicon carbide. Appl. Phys. Express 2015, 8, 036602. [Google Scholar] [CrossRef] [Green Version]
- Fromm, F.; Oliveira Jr, M.H.; Molina-Sanchez, A.; Hundhausen, M.; Lopes, J.M.J.; Riechert, H.; Wirtz, L.; Seyller, T. Contribution of the buffer layer to the Raman spectrum of epitaxial graphene on SiC(0001). New J. Phys. 2013, 15, 043031. [Google Scholar] [CrossRef] [Green Version]
- Musumeci, F.; Pollack, G.H. High electrical permittivity of ultrapure water at the water–platinum interface. Chem. Phys. Lett. 2014, 613, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Yatsuzuka, K.; Higashiyama, Y.; Asano, K. Electrification of polymer surface caused by sliding ultrapure water. IEEE Trans. Ind. Appl. 2019, 32, 825–831. [Google Scholar] [CrossRef]
- Armitage, J.L.; Ghanbarzadeh, A.; Bryant, M.G.; Neville, A. Investigating the influence of friction and material wear on triboelectric charge transfer in metal–polymer contacts. Tribol. Lett. 2022, 70, 46. [Google Scholar] [CrossRef]
- Tan, J.; Guo, Y.; Guo, W. Ultralow friction of ion-containing water nanodroplets. Nano Res. 2023, 16, 1792–1797. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohno, Y.; Shimmen, A.; Kinoshita, T.; Nagase, M. Energy Harvesting of Deionized Water Droplet Flow over an Epitaxial Graphene Film on a SiC Substrate. Materials 2023, 16, 4336. https://doi.org/10.3390/ma16124336
Ohno Y, Shimmen A, Kinoshita T, Nagase M. Energy Harvesting of Deionized Water Droplet Flow over an Epitaxial Graphene Film on a SiC Substrate. Materials. 2023; 16(12):4336. https://doi.org/10.3390/ma16124336
Chicago/Turabian StyleOhno, Yasuhide, Ayumi Shimmen, Tomohiro Kinoshita, and Masao Nagase. 2023. "Energy Harvesting of Deionized Water Droplet Flow over an Epitaxial Graphene Film on a SiC Substrate" Materials 16, no. 12: 4336. https://doi.org/10.3390/ma16124336