Effect of Manganese Alloying on Infrared Detectors Made of Pb1−xMnxTe/CdTe Multilayer Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization and Measurements
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rogalski, A. Recent progress in infrared detector technologies. Infrared Phys. Technol. 2011, 54, 136–154. [Google Scholar] [CrossRef]
- Rogalski, A. Infrared Detectors, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Rogalski, A. Infrared and Terahertz Detectors; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Si, J.; Jin, S.; Zhang, H.; Zhu, P.; Qiu, D.; Wu, H. Experimental determination of valence band offset at PbTe/CdTe(111) heterojunction interface by x-ray photoelectron spectroscopy. Appl. Phys. Lett. 2008, 93, 202101. [Google Scholar] [CrossRef]
- Leitsmann, R.; Bechstedt, F. Influence of the quantum confined stark effect on photoluminescence spectra of PbTe nanodots embedded in a CdTe matrix. Phys. Rev. B 2009, 80, 165402. [Google Scholar] [CrossRef]
- Karczewski, G.; Szot, M.; Kret, S.; Kowalczyk, L.; Chusnutdinow, S.; Wojtowicz, T.; Schreyeck, S.; Brunner, K.; Schumacher, C.; Molenkamp, L.W. Nanoscale morphology of multilayer PbTe/CdTe heterostructures and its effect on photoluminescence properties. Nanotechnology 2015, 26, 135601. [Google Scholar] [CrossRef]
- Hochreiner, A.; Schwarzl, T.; Eibelhuber, M.; Heiss, W.; Springholz, G.; Kolkovsky, V.; Karczewski, G.; Wojtowicz, T. Midinfrared electroluminescence from PbTe/CdTe quantum dot light-emitting diodes. Appl. Phys. Lett. 2011, 98, 021106. [Google Scholar] [CrossRef]
- Cai, C.F.; Jin, S.Q.; Wu, H.Z.; Zhang, B.P.; Hu, L.; McCann, P.J. Plasmon-enhanced mid-infrared luminescence from polar and lattice-structure-mismatched CdTe/PbTe single heterojunctions. Appl. Phys. Lett. 2012, 100, 182104. [Google Scholar] [CrossRef]
- Jin, S.Q.; Cai, C.F.; Bi, G.; Zhang, B.P.; Wu, H.Z.; Zhang, Y. Two-dimensional electron gas at the metastable twisted interfaces of CdTe/PbTe (111) single heterojunctions. Phys. Rev. B 2013, 87, 235315. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.P.; Lu, P.; Liu, H.N.; Jiao, L.; Ye, Z.Y.; Jaime, M.; Balakirev, F.F.; Yuan, H.Q.; Wu, H.Z.; Pan, W.; et al. Quantum oscillations in a two-dimensional electron gas at the rocksalt/zincblende interface of PbTe/CdTe (111) heterostructures. Nano Lett. 2015, 15, 4381–4386. [Google Scholar] [CrossRef]
- Zhang, L.; Shu, T.Y.; Wu, H.Z.; Ye, Z.Z.; Zhu, L.P. Electric-field control of dirac two-dimensional electron gas in PbTe/CdTe heterostructures. Phys. Status Solidi-R 2019, 13, 1800551. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Xu, H.L.; Wang, Z.L.; Chen, Y.S.; Ma, S.S.; Ali, N.; Zhu, H.M.; Rahimi-Iman, A.; Wu, H.Z. Lateral photovoltaic mid-infrared detector with a two-dimensional electron gas at the heterojunction interface. Optica 2020, 7, 1394–1401. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Xu, H.L.; Ma, S.S.; Wang, Z.L.; Li, K.; Ali, N.S.R.; Zhong, J.; Zhou, Q.H.; Zhu, H.M.; Lai, W.E.; et al. Ultrahigh-speed mid-infrared photodetectors with 2-d electron gas in a CdTe/PbTe heterojunction. IEEE Trans. Electron Devices 2020, 67, 2432–2436. [Google Scholar] [CrossRef]
- Chusnutdinow, S.; Schreyeck, S.; Kret, S.; Kazakov, A.; Karczewski, G. Room temperature infrared detectors made of PbTe/CdTe multilayer composite. Appl. Phys. Lett. 2020, 117, 072102. [Google Scholar] [CrossRef]
- Charache, G.W.; Baldasaro, P.F.; Danielson, L.R.; DePoy, D.M.; Freeman, M.J.; Wang, C.a.; Choi, H.K.; Garbuzov, D.Z.; Martinelli, R.U.; Khalfin, V.; et al. InGaAsSb thermophotovoltaic diode: Physics evaluation. J. Appl. Phys. 1999, 85, 2247–2252. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.T.; Grim, J.Q.; Li, Q.; Ucer, K.B.; Bizarri, G.A.; Burger, A. Scintillation detectors of radiation: Excitations at high densities and strong gradients. In Excitonic and Photonic Processes in Materials; Singh, J., Williams, R.T., Eds.; Springer Singapore: Singapore, 2015; pp. 299–358. [Google Scholar]
- Meyer, J.R.; Felix, C.L.; Bewley, W.W.; Vurgaftman, I.; Aifer, E.H.; Olafsen, L.J.; Lindle, J.R.; Hoffman, C.A.; Yang, M.J.; Bennett, B.R.; et al. Auger coefficients in type-ii InAs/Ga1−XInxSb quantum wells. Appl. Phys. Lett. 1998, 73, 2857. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R.; Dell, J.M.; Fisher, T.A.; Faraone, L. Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers. J. Appl. Phys. 1998, 83, 4286–4291. [Google Scholar] [CrossRef]
- Jiang, Y.; Teich, M.C.; Wang, W.I. Carrier lifetime and threshold currents in hgcdte double heterostructure and MQW laser. J. Appl. Phys. 1991, 2, 6869–6875. [Google Scholar] [CrossRef] [Green Version]
- Weng, B.; Qiu, J.; Zhao, L.; Chang, C.; Shi, Z. CdS/PbSe heterojunction for high temperature mid-infrared photovoltaic detector applications. Appl. Phys. Lett. 2014, 104, 121111. [Google Scholar] [CrossRef] [Green Version]
- Chusnutdinow, S.; Szot, M.; Wojtowicz, T.; Karczewski, G. PbSe/CdTe single quantum well infrared detectors. AIP Adv. 2017, 7, 035111. [Google Scholar] [CrossRef] [Green Version]
- Minkowski, M.; Zaluska-Kotur, M.A.; Turski, L.A.; Karczewski, G. Monte carlo simulations of morphological transitions in PbTe/CdTe immiscible material systems. J. Appl. Phys. 2016, 120, 124305. [Google Scholar] [CrossRef]
- Minkowski, M.; Zaluska-Kotur, M.A.; Kret, S.; Chusnutdinow, S.; Schreyeck, S.; Brunner, K.; Molenkamp, L.W.; Karczewski, G. Self-organization process in crystalline PbTe/CdTe multilayer structures: Experiment and monte carlo simulations. J. Alloy. Compd. 2018, 747, 809–814. [Google Scholar] [CrossRef]
- Osinniy, V.; Jedrzejczak, A.; Domuchowski, W.; Dybko, K.; Witkowska, B.; Story, T. Pb1-xMnxTe crystals as a new thermoelectric material. Acta Phys. Pol. A 2005, 108, 809–816. [Google Scholar] [CrossRef]
- Lusakowski, A.; Jedrzejczak, A.; Gorska, M.; Osinniy, V.; Arciszewska, M.; Dobrowolski, W.; Domukhovski, V.; Witkowska, B.; Story, T.; Galazka, R.R. Magnetic contribution to the specific heat of Pb1-xMnxTe. Phys. Rev. B 2002, 65, 165206. [Google Scholar] [CrossRef]
- Miotkowska, S.; Dynowska, E.; Miotkowski, I.; Szczerbakow, A.; Witkowska, B.; Kachniarz, J.; Paszkowicz, W. The lattice constants of ternary and quaternary alloys in the PbTe-SnTe-MnTe system. J. Cryst. Growth 1999, 200, 483–489. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L.H.; Zhang, J.Y.; Xing, J.J.; Luo, J. Eutectic microstructures and thermoelectric properties of MnTe-rich precipitates hardened PbTe. Acta Mater. 2016, 111, 202–209. [Google Scholar] [CrossRef]
- Tholence, J.; Mauger, A.; Escorne, M.; Triboulet, R. Magnetic-properties of Pb1-xMnxTe. J. Appl. Phys. 1984, 55, 2313–2314. [Google Scholar] [CrossRef]
- Clemens, H.; Weilguni, P.C.; Stromberger, U.; Bauer, G. Growth of PbTe/Pb1-xMnxTe quantum well structures by molecular-beam epitaxy. J. Vac. Sci. Technol. A 1989, 7, 3197–3199. [Google Scholar] [CrossRef]
Mn Content | R | ||||
---|---|---|---|---|---|
% | /W | kOhm | |||
0 | 25.0 | 1.1 × 10−8 | 7.5 | 0.021 | 3.5 × 108 |
3.0 | 6.3 | 1.6 × 10−8 | 17.0 | 0.025 | 1.7 × 108 |
3.2 | 1.4 | 1.5 × 10−8 | 14.2 | 0.028 | 3.6 × 107 |
6.3 | 0.60 | 2.1 × 10−8 | 8.6 | 0.019 | 8.0 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chusnutdinow, S.; Kazakov, A.; Jakieła, R.; Szot, M.; Schreyeck, S.; Brunner, K.; Karczewski, G. Effect of Manganese Alloying on Infrared Detectors Made of Pb1−xMnxTe/CdTe Multilayer Composite. Materials 2023, 16, 4211. https://doi.org/10.3390/ma16124211
Chusnutdinow S, Kazakov A, Jakieła R, Szot M, Schreyeck S, Brunner K, Karczewski G. Effect of Manganese Alloying on Infrared Detectors Made of Pb1−xMnxTe/CdTe Multilayer Composite. Materials. 2023; 16(12):4211. https://doi.org/10.3390/ma16124211
Chicago/Turabian StyleChusnutdinow, Sergij, Alexander Kazakov, Rafał Jakieła, Michał Szot, Steffen Schreyeck, Karl Brunner, and Grzegorz Karczewski. 2023. "Effect of Manganese Alloying on Infrared Detectors Made of Pb1−xMnxTe/CdTe Multilayer Composite" Materials 16, no. 12: 4211. https://doi.org/10.3390/ma16124211
APA StyleChusnutdinow, S., Kazakov, A., Jakieła, R., Szot, M., Schreyeck, S., Brunner, K., & Karczewski, G. (2023). Effect of Manganese Alloying on Infrared Detectors Made of Pb1−xMnxTe/CdTe Multilayer Composite. Materials, 16(12), 4211. https://doi.org/10.3390/ma16124211