Towards High-Efficiency Photon Trapping in Thin-Film Perovskite Solar Cells Using Etched Fractal Metadevices
Abstract
:1. Introduction
2. Design Considerations and Simulation Conditions
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Zeng, L.; Zhu, T.; Chen, H.; Chen, B.; Kubicki, D.J.; Balvanz, A.; Li, C.; Maxwell, A.; Ugur, E.; et al. Suppressed phase segregation for triple-junction perovskite solar cells. Nature 2023, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Li, S.; Ren, J.; Liu, Y.; Wu, Y.; Sun, Q.; Cui, Y.; Hao, Y. Cyano-4-Pentylbiphenyl dopant strategy for P3HT-Based CsPbI3 perovskite solar cells with a record efficiency and preeminent stability. Chem. Eng. J. 2023, 455, 140831. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Zhumagali, S.; T. Merino, L.V.; De Bastiani, M.; McCulloch, I.; De Wolf, S. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 2023, 8, 89–108. [Google Scholar] [CrossRef]
- Yang, L.; Feng, J.; Liu, Z.; Duan, Y.; Zhan, S.; Yang, S.; He, K.; Li, Y.; Zhou, Y.; Yuan, N.; et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv. Mater. 2022, 34, 2201681. [Google Scholar] [CrossRef]
- Jiang, X.; Zang, Z.; Zhou, Y.; Li, H.; Wei, Q.; Ning, Z. Tin halide perovskite solar cells: An emerging thin-film photovoltaic technology. Accounts Mater. Res. 2021, 2, 210–219. [Google Scholar] [CrossRef]
- Peng, Y.; Huang, J.; Zhou, L.; Mu, Y.; Han, S.; Zhou, S.; Gao, P. Efficient thin-film perovskite solar cells from a two-step sintering of nanocrystals. Nanoscale 2023, 15, 2924–2931. [Google Scholar] [CrossRef]
- Finkenauer, B.P.; Zhang, Y.; Ma, K.; Turnley, J.W.; Schulz, J.; Gómez, M.; Coffey, A.H.; Sun, D.; Sun, J.; Agrawal, R.; et al. Amine-Thiol/Selenol Chemistry for Efficient and Stable Perovskite Solar Cells. J. Phys. Chem. C 2023, 127, 930–938. [Google Scholar] [CrossRef]
- Yerezhep, D.; Omarova, Z.; Aldiyarov, A.; Shinbayeva, A.; Tokmoldin, N. IR Spectroscopic Degradation Study of Thin Organometal Halide Perovskite Films. Molecules 2023, 28, 1288. [Google Scholar] [CrossRef]
- Naqvi, F.H.; Ko, J.H. Structural Phase Transitions and Thermal Degradation Process of MAPbCl3 Single Crystals Studied by Raman and Brillouin Scattering. Materials 2022, 15, 8151. [Google Scholar] [CrossRef]
- Omarova, Z.; Yerezhep, D.; Aldiyarov, A.; Tokmoldin, N. In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells. Crystals 2022, 12, 699. [Google Scholar] [CrossRef]
- Wali, Q.; Iftikhar, F.J.; Khan, M.E.; Ullah, A.; Iqbal, Y.; Jose, R. Advances in stability of perovskite solar cells. Org. Electron. 2020, 78, 105590. [Google Scholar] [CrossRef]
- Wu, F.; Pathak, R.; Chen, K.; Wang, G.; Bahrami, B.; Zhang, W.H.; Qiao, Q. Inverted current–voltage hysteresis in perovskite solar cells. ACS Energy Lett. 2018, 3, 2457–2460. [Google Scholar] [CrossRef]
- Kang, D.H.; Park, N.G. On the current–voltage hysteresis in perovskite solar cells: Dependence on perovskite composition and methods to remove hysteresis. Adv. Mater. 2019, 31, 1805214. [Google Scholar] [CrossRef]
- Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D’Haen, J.; D’Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 2015, 5, 1500477. [Google Scholar] [CrossRef]
- Zhao, X.; Park, N.G. Stability issues on perovskite solar cells. Photonics 2015, 2, 1139–1151. [Google Scholar] [CrossRef]
- Singh, R.; Parashar, M. Origin of Hysteresis in Perovskite Solar Cells. In Soft-Matter Thin Film Solar Cells: Physical Processes and Device Simulation; AIP Publishing LLC: Melville, NY, USA, 2020. [Google Scholar]
- Aydin, E.; De Bastiani, M.; De Wolf, S. Defect and contact passivation for perovskite solar cells. Adv. Mater. 2019, 31, 1900428. [Google Scholar] [CrossRef]
- Almora, O.; Lopez-Varo, P.; Cho, K.T.; Aghazada, S.; Meng, W.; Hou, Y.; Echeverría-Arrondo, C.; Zimmermann, I.; Matt, G.J.; Jiménez-Tejada, J.A.; et al. Ionic dipolar switching hinders charge collection in perovskite solar cells with normal and inverted hysteresis. Sol. Energy Mater. Sol. Cells 2019, 195, 291–298. [Google Scholar] [CrossRef]
- Hu, X.; Wang, H.; Wang, M.; Zang, Z. Interfacial defects passivation using fullerene-polymer mixing layer for planar-structure perovskite solar cells with negligible hysteresis. Sol. Energy 2020, 206, 816–825. [Google Scholar] [CrossRef]
- Kan, C.; Tang, Z.; Yao, Y.; Hang, P.; Li, B.; Wang, Y.; Sun, X.; Lei, M.; Yang, D.; Yu, X. Mitigating ion migration by polyethylene glycol-modified fullerene for perovskite solar cells with enhanced stability. ACS Energy Lett. 2021, 6, 3864–3872. [Google Scholar] [CrossRef]
- Yang, J.; Tang, W.; Yuan, R.; Chen, Y.; Wang, J.; Wu, Y.; Yin, W.J.; Yuan, N.; Ding, J.; Zhang, W.H. Defect mitigation using d-penicillamine for efficient methylammonium-free perovskite solar cells with high operational stability. Chem. Sci. 2021, 12, 2050–2059. [Google Scholar] [CrossRef]
- Choi, J.S.; Jang, Y.W.; Kim, U.; Choi, M.; Kang, S.M. Optically and Mechanically Engineered Anti-Reflective Film for Highly Efficient Rigid and Flexible Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2201520. [Google Scholar] [CrossRef]
- Spence, M.; Hammond, R.; Pockett, A.; Wei, Z.; Johnson, A.; Watson, T.; Carnie, M.J. A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells. ACS Appl. Energy Mater. 2022, 5, 5974–5982. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, S.; Zhengshan, J.Y.; Ali, A.; Ali, W.; Bush, K.A.; Palmstrom, A.F.; Bent, S.F.; McGehee, M.D.; Holman, Z.C. Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer. Sol. Energy Mater. Sol. Cells 2017, 173, 59–65. [Google Scholar] [CrossRef]
- Qarony, W.; Hossain, M.I.; Dewan, R.; Fischer, S.; Meyer-Rochow, V.B.; Salleo, A.; Knipp, D.; Tsang, Y.H. Approaching perfect light incoupling in perovskite and silicon thin film solar cells by moth eye surface textures. Adv. Theory Simul. 2018, 1, 1800030. [Google Scholar] [CrossRef]
- Kim, M.; Kang, T.W.; Kim, S.H.; Jung, E.H.; Park, H.H.; Seo, J.; Lee, S.J. Antireflective, self-cleaning and protective film by continuous sputtering of a plasma polymer on inorganic multilayer for perovskite solar cells application. Sol. Energy Mater. Sol. Cells 2019, 191, 55–61. [Google Scholar] [CrossRef]
- Baryshnikova, K.; Gets, D.; Liashenko, T.; Pushkarev, A.; Mukhin, I.; Kivshar, Y.; Makarov, S. Broadband antireflection with halide perovskite metasurfaces. Laser Photonics Rev. 2020, 14, 2000338. [Google Scholar] [CrossRef]
- Hossain, M.I.; Yumnam, N.; Qarony, W.; Salleo, A.; Wagner, V.; Knipp, D.; Tsang, Y.H. Non-resonant metal-oxide metasurfaces for efficient perovskite solar cells. Sol. Energy 2020, 198, 570–577. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z. Broadband optical absorption enhancement in hybrid organic–inorganic perovskite metasurfaces. AIP Adv. 2021, 11, 025107. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, X. Light absorption enhancement in ultrathin perovskite solar cells using plasmonic light trapping and bionic anti-reflection coating. AIP Adv. 2022, 12, 065106. [Google Scholar] [CrossRef]
- Danila, O.; Bărar, A.; Vlădescu, M.; Mănăilă-Maximean, D. An extended k-surface framework for electromagnetic fields in artificial media. Materials 2021, 14, 7842. [Google Scholar] [CrossRef]
- Cai, W.; Shalaev, V.M. Optical Metamaterials; Springer: Berlin/Heidelberg, Germany, 2010; Volume 10. [Google Scholar]
- He, S.; Tian, R.; Wu, W.; Li, W.D.; Wang, D. Helium-ion-beam nanofabrication: Extreme processes and applications. Int. J. Extrem. Manuf. 2020, 3, 012001. [Google Scholar] [CrossRef]
- Chiappim, W.; Neto, B.B.; Shiotani, M.; Karnopp, J.; Gonçalves, L.; Chaves, J.P.; Sobrinho, A.d.S.; Leitão, J.P.; Fraga, M.; Pessoa, R. Plasma-Assisted Nanofabrication: The Potential and Challenges in Atomic Layer Deposition and Etching. Nanomaterials 2022, 12, 3497. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Qi, D.; Yu, W.; Zheng, H. Progress in the design, nanofabrication, and performance of metalenses. J. Opt. 2022, 24, 033001. [Google Scholar] [CrossRef]
- Yin, H.; Cui, J.; Wang, X.; Ren, X.; Zhang, J.; Mei, H.; Xu, K.; Mei, X. Nanofabrication mechanism of λ/20 features achieved by coupling field tip enhancement induced with nanosecond laser irradiating AFM probe tip. Appl. Surf. Sci. 2023, 607, 155065. [Google Scholar] [CrossRef]
- Wang, B.; Quan, B.; He, J.; Xie, Z.; Wang, X.; Li, J.; Kan, Q.; Zhang, Y. Wavelength de-multiplexing metasurface hologram. Sci. Rep. 2016, 6, 35657. [Google Scholar] [CrossRef]
- Venkatesh, S.; Lu, X.; Saeidi, H.; Sengupta, K. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips. Nat. Electron. 2020, 3, 785–793. [Google Scholar] [CrossRef]
- Danila, O. Polyvinylidene Fluoride-Based Metasurface for High-Quality Active Switching and Spectrum Shaping in the Terahertz G-Band. Polymers 2021, 13, 1860. [Google Scholar] [CrossRef]
- Bărar, A.; Danila, O. Spectral Response and Wavefront Control of a C-Shaped Fractal Cadmium Telluride/Silicon Carbide Metasurface in the THz Bandgap. Materials 2022, 15, 5944. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Guo, X.; Chen, T.; Liang, H.; Hao, X.; Hou, X.; Kou, W.; Zhao, Y.; Zhou, T.; et al. A review of THz modulators with dynamic tunable metasurfaces. Nanomaterials 2019, 9, 965. [Google Scholar] [CrossRef]
- Ali, A.; Khalily, M.; Serghiou, D.; Tafazolli, R. Reflective Metasurface with Steered OAM Beams for THz Communications. IEEE Access 2023, 11, 12394–12401. [Google Scholar] [CrossRef]
- Danila, O.; Mănăilă-Maximean, D.; Bărar, A.; Loiko, V.A. Non-layered gold-silicon and all-silicon frequency-selective metasurfaces for potential mid-infrared sensing applications. Sensors 2021, 21, 5600. [Google Scholar] [CrossRef] [PubMed]
- Danila, O.; Gross, B.M. Towards Highly Efficient Nitrogen Dioxide Gas Sensors in Humid and Wet Environments Using Triggerable-Polymer Metasurfaces. Polymers 2023, 15, 545. [Google Scholar] [CrossRef] [PubMed]
- Avayu, O.; Eisenbach, O.; Ditcovski, R.; Ellenbogen, T. Optical metasurfaces for polarization-controlled beam shaping. Opt. Lett. 2014, 39, 3892–3895. [Google Scholar] [CrossRef] [PubMed]
- Scheuer, J. Metasurfaces-based holography and beam shaping: Engineering the phase profile of light. Nanophotonics 2017, 6, 137–152. [Google Scholar] [CrossRef]
- Holsteen, A.L.; Cihan, A.F.; Brongersma, M.L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science 2019, 365, 257–260. [Google Scholar] [CrossRef]
- Luo, X. Multiscale Optical Field Manipulation via Planar Digital Optics. ACS Photonics 2023. [Google Scholar] [CrossRef]
- Tkachenko, G.; Stellinga, D.; Ruskuc, A.; Chen, M.; Dholakia, K.; Krauss, T.F. Optical trapping with planar silicon metalenses. Opt. Lett. 2018, 43, 3224–3227. [Google Scholar] [CrossRef]
- Yang, J.; Ghimire, I.; Wu, P.C.; Gurung, S.; Arndt, C.; Tsai, D.P.; Lee, H.W.H. Photonic crystal fiber metalens. Nanophotonics 2019, 8, 443–449. [Google Scholar] [CrossRef]
- Arbabi, A.; Faraon, A. Advances in optical metalenses. Nat. Photonics 2022, 17, 16–25. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Wei, Y.; Lin, Y.; Han, Y.; Deng, Y. High-Efficiency Achromatic Metalens Topologically Optimized in the Visible. Nanomaterials 2023, 13, 890. [Google Scholar] [CrossRef]
- Shameli, M.A.; Salami, P.; Yousefi, L. Light trapping in thin film solar cells using a polarization independent phase gradient metasurface. J. Opt. 2018, 20, 125004. [Google Scholar] [CrossRef]
- Voroshilov, P.M.; Ovchinnikov, V.; Papadimitratos, A.; Zakhidov, A.A.; Simovski, C.R. Light trapping enhancement by silver nanoantennas in organic solar cells. ACS Photonics 2018, 5, 1767–1772. [Google Scholar] [CrossRef]
- Lu, H.; Guo, X.; Zhang, J.; Zhang, X.; Li, S.; Yang, C. Asymmetric metasurface structures for light absorption enhancement in thin film silicon solar cell. J. Opt. 2019, 21, 045901. [Google Scholar] [CrossRef]
- Shameli, M.A.; Fallah, A.; Yousefi, L. Developing an optimized metasurface for light trapping in thin-film solar cells using a deep neural network and a genetic algorithm. JOSA B 2021, 38, 2728–2735. [Google Scholar] [CrossRef]
- Wang, R.; Yue, S.; Zhang, Z.; Hou, Y.; Zhao, H.; Qu, S.; Li, M.; Zhang, Z. Broadband perfect absorber in the visible range based on metasurface composite structures. Materials 2022, 15, 2612. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, H.; Koshelev, K.; Zhang, F.; Yang, Y.; Wu, J.; Kivshar, Y.; Jia, B. Full-stokes polarization perfect absorption with diatomic metasurfaces. Nano Lett. 2021, 21, 1090–1095. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Z.; Liu, J.; Cheng, J.; Zhou, Y.; Xiao, L.; Chen, K. Ultra-narrow band mid-infrared perfect absorber based on hybrid dielectric metasurface. Nanomaterials 2019, 9, 1350. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, F.; Huang, X.G.; Zheng, H. Polarization-controlled triple-band absorption in all-metal nanostructures with magnetic dipoles and anapole responses. Appl. Phys. Express 2019, 12, 062014. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Z.; Cheng, Z. Terahertz perfect absorber based on InSb metasurface for both temperature and refractive index sensing. Opt. Mater. 2021, 117, 111129. [Google Scholar] [CrossRef]
- Janneh, M.; De Marcellis, A.; Palange, E.; Tenggara, A.; Byun, D. Design of a metasurface-based dual-band Terahertz perfect absorber with very high Q-factors for sensing applications. Opt. Commun. 2018, 416, 152–159. [Google Scholar] [CrossRef]
- Niharika, N.; Singh, S. Highly sensitive tunable terahertz absorber for biosensing applications. Optik 2023, 273, 170476. [Google Scholar] [CrossRef]
- Loh, J.Y.; Safari, M.; Mao, C.; Viasus, C.J.; Eleftheriades, G.V.; Ozin, G.A.; Kherani, N.P. Near-perfect absorbing copper metamaterial for solar fuel generation. Nano Lett. 2021, 21, 9124–9130. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhang, P.; Li, Q.; Zhang, Y.; Li, W. A perfect selective metamaterial absorber for high-temperature solar energy harvesting. Sol. Energy 2021, 230, 1165–1174. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, G.; Huang, Z.; Liu, X.; Fu, G. Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol. Energy Mater. Sol. Cells 2018, 179, 346–352. [Google Scholar] [CrossRef]
- Katrodiya, D.; Jani, C.; Sorathiya, V.; Patel, S.K. Metasurface based broadband solar absorber. Opt. Mater. 2019, 89, 34–41. [Google Scholar] [CrossRef]
- Xu, W.; Cheng, H.; Luo, X.; Cheng, Z.; Ke, C.; Zhai, X. A tunable all dielectric perfect absorber based on hybrid graphene-dielectric metasurface in the mid-infrared regime. Opt. Quantum Electron. 2023, 55, 272. [Google Scholar] [CrossRef]
- Swett, D.W. Near zero index perfect metasurface absorber using inverted conformal mapping. Sci. Rep. 2020, 10, 9731. [Google Scholar] [CrossRef]
- Patel, S.K.; Parmar, J.; Sorathiya, V.; Zakaria, R.B.; Nguyen, T.K.; Dhasarathan, V. Graphene-based plasmonic absorber for biosensing applications using gold split ring resonator metasurfaces. J. Lightwave Technol. 2021, 39, 5617–5624. [Google Scholar] [CrossRef]
- Niharika, N.; Singh, S.; Kumar, P. Bicontrollable all dielectric metasurface absorber for chemical and biosensing applications. Photonics Nanostruct.-Fundam. Appl. 2023, 54, 101116. [Google Scholar] [CrossRef]
- Bilal, R.; Baqir, M.; Choudhury, P.; Naveed, M.; Ali, M.; Rahim, A. Ultrathin broadband metasurface-based absorber comprised of tungsten nanowires. Results Phys. 2020, 19, 103471. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Yu, H.; Yuan, B.; Xu, F.; Wei, H.; Cao, B. Highly conductive P-type MAPbI3 films and crystals via sodium doping. Front. Chem. 2020, 8, 754. [Google Scholar] [CrossRef]
- Leguy, A.M.; Hu, Y.; Campoy-Quiles, M.; Alonso, M.I.; Weber, O.J.; Azarhoosh, P.; Van Schilfgaarde, M.; Weller, M.T.; Bein, T.; Nelson, J.; et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 2015, 27, 3397–3407. [Google Scholar] [CrossRef]
- Tabor, D.P.; Chiykowski, V.A.; Friederich, P.; Cao, Y.; Dvorak, D.J.; Berlinguette, C.P.; Aspuru-Guzik, A. Design rules for high mobility xanthene-based hole transport materials. Chem. Sci. 2019, 10, 8360–8366. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Huang, L.; Zeng, R.; Sun, W. Inhibited Aggregation of Lithium Salt in Spiro-OMeTAD for Perovskite Solar Cells. Crystals 2022, 12, 290. [Google Scholar] [CrossRef]
- Filipič, M.; Löper, P.; Niesen, B.; De Wolf, S.; Krč, J.; Ballif, C.; Topič, M. CH 3 NH 3 PbI 3 perovskite/silicon tandem solar cells: Characterization based optical simulations. Opt. Express 2015, 23, A263–A278. [Google Scholar] [CrossRef]
Element | Notation | Size |
---|---|---|
Main “C” element length | ||
Main “C” element width | ||
Medium “C” element length | ||
Medium “C” element width | ||
Small “C” element length | ||
Small “C” element width | ||
Substrate height | 2 | |
“C” elements height | ||
Coating layer height | 2 | |
Gap between “C” elements | g | |
Cell size | P | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bărar, A.; Maclean, S.A.; Dănilă, O.; Taylor, A.D. Towards High-Efficiency Photon Trapping in Thin-Film Perovskite Solar Cells Using Etched Fractal Metadevices. Materials 2023, 16, 3934. https://doi.org/10.3390/ma16113934
Bărar A, Maclean SA, Dănilă O, Taylor AD. Towards High-Efficiency Photon Trapping in Thin-Film Perovskite Solar Cells Using Etched Fractal Metadevices. Materials. 2023; 16(11):3934. https://doi.org/10.3390/ma16113934
Chicago/Turabian StyleBărar, Ana, Stephen Akwei Maclean, Octavian Dănilă, and André D. Taylor. 2023. "Towards High-Efficiency Photon Trapping in Thin-Film Perovskite Solar Cells Using Etched Fractal Metadevices" Materials 16, no. 11: 3934. https://doi.org/10.3390/ma16113934
APA StyleBărar, A., Maclean, S. A., Dănilă, O., & Taylor, A. D. (2023). Towards High-Efficiency Photon Trapping in Thin-Film Perovskite Solar Cells Using Etched Fractal Metadevices. Materials, 16(11), 3934. https://doi.org/10.3390/ma16113934