Advances in Two-Dimensional Magnetic Semiconductors via Substitutional Doping of Transition Metal Dichalcogenides
Abstract
:1. Introduction
2. Effects of Magnetic Doping in 2D TMDs
3. Synthesis via Chemical Vapor Deposition (CVD)
3.1. LPCVD Growth and Doping
3.1.1. Solid Source-Based Growth and Doping of TMDs
3.1.2. Liquid-Assisted Growth and Doping of TMDs
3.2. MOCVD Growth and Doping
Material Type | Dopant | Synthesis Methods | Size | Thickness | Doping Concentrations | Semiconductor Type after Doping | Ref |
---|---|---|---|---|---|---|---|
MoS2 | Co, Cr | Solid source CVD | ~20 um | monolayer | Co 1% Cr 0.3% | p-type | [65] |
MoS2 | Fe | Solid source CVD | ~20 um | monolayer | 0.3~0.5% | - | [47] |
MoS2 | Fe | Solid source CVD | ~30 um | monolayer | 0.40% | - | [34] |
WSe2 | V | Liquid-phase assistant CVD | >50 um | monolayer | 0.5–10% | p-type | [57] |
Td-Wte2 | Cr | Two-step Te flux CVD | ~1 um | bulk | 2% | - | [54] |
MoS2 | Mn | Solid source CVD | ~200 nm | monolayer | 2% | - | [21] |
WS2 | V | Liquid-phase assistant CVD | - | monolayer | 0.4–12% | p-type | [49] |
MoSe2 | Fe | Liquid-phase assistant CVD | ~40 um | monolayer | 0.93–6.1% | n-type | [58] |
MoTe2 | Cr | Solid source CVD | >1 um | 2H bulk | 2.1–4.3% | p-type | [66] |
MoS2 | Re | Solid source CVD | ~15 um | monolayer | 1% | n-type | [22] |
MoS2 | Nb | MOCVD | Wafer-scale | monolayer | 5% | - | [60] |
Wse2 | V | MOCVD | - | monolayer to multilayer | 0.44% | p-type | [61] |
Wse2 | Re | MOCVD | 450–500 nm | monolayer | 0.5–1.1% | n-type | [62] |
4. Optical, Magnetic, and Other Properties
4.1. Optical Properties
4.2. Magnetic Properties
Material | Dopant Concentration | Saturation Magnetization | Coercivity | Temperature | Reference |
---|---|---|---|---|---|
Fe-doped SnS2 | 2.10% | 3.49 × 10−3 emug−1 | 400 Oe | 300K | [20] |
Co-Cr-doped MoS2 | 1% Co, 0.3% Cr | 0.4 emu cm−3 | 100 Oe | 300K | [65] |
V-doped MoTe2 | 0.30% | 0.6 μemu cm−2 | - | 300K | [17] |
Co- and Nb-doped WSe2 | 4% | 60.62 emu g−1 | 1.2 k Oe | 10K | [48] |
Cr-doped Td-WTe2 | 1% | 4.20 emu g–1 | - | 3K | [54] |
V-doped WS2 | 2% | 2.85 × 10−5 emu cm−2 | 180 Oe | 50K | [49] |
Mn-doped MoSe2 | 6.10% | 2 × 10−5 emu g−1 | - | 300K | [58] |
Cr-doped 2H-MoTe2 | 2.50% | 4.78 emu g−1 | 6322 Oe | 3K | [66] |
V-doped MoS2 | 5% | 0.067 emu g−1 | 1870 Oe | 10K | [74] |
4.3. Other Properties
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Burch, K.S.; Mandrus, D.; Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Dietl, T.; Bonanni, A.; Ohno, H. Families of magnetic semiconductors—An overview. J. Semicond. 2019, 40, 080301. [Google Scholar] [CrossRef]
- Kriegner, D.; Výborný, K.; Olejník, K.; Reichlová, H.; Novák, V.; Marti, X.; Gazquez, J.; Saidl, V.; Němec, P.; Volobuev, V.V.; et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 2016, 7, 11623. [Google Scholar] [CrossRef]
- Mustaqima, M.; Liu, C. ZnO-based nanostructures for diluted magnetic semiconductor. Turk. J. Phys. 2014, 38, 429–441. [Google Scholar] [CrossRef]
- Puthirath Balan, A.; Radhakrishnan, S.; Neupane, R.; Yazdi, S.; Deng, L.; de los Reyes, C.; Apte, A.; Puthirath, A.B.; Rao, B.M.; Paulose, M.; et al. Magnetic properties and photocatalytic applications of 2D sheets of nonlayered manganese telluride by liquid exfoliation. ACS Appl. Nano Mater. 2018, 1, 6427–6434. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Tao, B.; Gu, S.; Xie, Y.; Wu, H.; Zhang, G.; Wang, G.; Zhang, W.; Chang, H. Two-Dimensional Metal Telluride Atomic Crystals: Preparation, Physical Properties, and Applications. Adv. Funct. Mater. 2021, 31, 2010901. [Google Scholar] [CrossRef]
- Tiwari, S.; de Put, M.L.; Sorée, B.; Vandenberghe, W.G. Magnetic order and critical temperature of substitutionally doped transition metal dichalcogenide monolayers. npj 2D Mater. Appl. 2021, 5, 54. [Google Scholar] [CrossRef]
- Fan, X.-L.; An, Y.-R.; Guo, W.-J. Ferromagnetism in transitional metal-doped MoS2 monolayer. Nanoscale Res. Lett. 2016, 11, 154. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, P.; Wang, T. Controlled electronic and magnetic properties of WSe2 monolayers by doping transition-metal atoms. Superlattices Microstruct. 2016, 100, 252–257. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Zhu, Z.Y.; Mi, W.B.; Guo, Z.B.; Schwingenschlögl, U. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 87, 2–5. [Google Scholar] [CrossRef]
- Ramasubramaniam, A.; Naveh, D. Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 87, 1–7. [Google Scholar] [CrossRef]
- Wu, C.-W.; Yao, D.-X. Robust p-orbital half-metallicity and high Curie-temperature in the hole-doped anisotropic TcX2 (X = S, Se) nanosheets. J. Magn. Magn. Mater. 2019, 478, 68–76. [Google Scholar] [CrossRef]
- Kan, M.; Adhikari, S.; Sun, Q. Ferromagnetism in mnx 2 (x = s, se) monolayers. Phys. Chem. Chem. Phys. 2014, 16, 4990–4994. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Cao, L.; Li, L.; Duan, J.; Liao, X.; Long, F.; Zhou, J.; Xiao, Y.; Zeng, Y.-J.; Zhou, S. Two-dimensional magneto-photoconductivity in non-van der Waals manganese selenide. Mater. Horiz. 2021, 8, 1286–1296. [Google Scholar]
- Coelho, P.M.; Komsa, H.-P.; Lasek, K.; Kalappattil, V.; Karthikeyan, J.; Phan, M.-H.; Krasheninnikov, A.V.; Batzill, M. Room-Temperature Ferromagnetism in MoTe2 by Post-Growth Incorporation of Vanadium Impurities. Adv. Electron. Mater. 2019, 5, 1900044. [Google Scholar] [CrossRef]
- Wu, M.; Yao, X.; Hao, Y.; Dong, H.; Cheng, Y.; Liu, H.; Lu, F.; Wang, W.; Cho, K.; Wang, W.-H. Electronic structures, magnetic properties and band alignments of 3d transition metal atoms doped monolayer MoS2. Phys. Lett. A 2018, 382, 111–115. [Google Scholar]
- Zhao, X.; Xia, C.; Wang, T.; Dai, X. Effect of structural defects on electronic and magnetic properties of pristine and Mn-doped MoS2 monolayer. Solid State Commun. 2015, 220, 31–35. [Google Scholar] [CrossRef]
- Li, B.B.; Xing, T.; Zhong, M.; Huang, L.; Lei, N.; Zhang, J.J.J.; Li, J.J.J.; Wei, Z.; Fu, S.; Kang, K.; et al. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958. [Google Scholar] [CrossRef]
- Zhang, K.; Feng, S.; Wang, J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C.; Lerach, J.; Bojan, V.; et al. Manganese Doping of Monolayer MoS2: The Substrate Is Critical. Nano Lett. 2015, 15, 6586–6591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Bersch, B.M.; Joshi, J.; Addou, R.; Cormier, C.R.; Zhang, C.; Xu, K.; Briggs, N.C.; Wang, K.; Subramanian, S.; et al. Tuning the Electronic and Photonic Properties of Monolayer MoS2 via In Situ Rhenium Substitutional Doping. Adv. Funct. Mater. 2018, 28, 1–7. [Google Scholar] [CrossRef]
- Fang, J.; Song, H.; Li, B.; Zhou, Z.; Yang, J.; Lin, B.; Liao, Z.; Wei, Z. Large unsaturated magnetoresistance of 2D magnetic semiconductor Fe-SnS2 homojunction. J. Semicond. 2022, 43, 92501. [Google Scholar] [CrossRef]
- Xing, S.; Zhou, J.; Zhang, X.; Elliott, S.; Sun, Z. Theory, properties and engineering of 2D magnetic materials. Prog. Mater. Sci. 2022, 132, 101036. [Google Scholar] [CrossRef]
- Li, X.; Lu, J.-T.; Zhang, J.; You, L.; Su, Y.; Tsymbal, E.Y. Spin-dependent transport in van der Waals magnetic tunnel junctions with Fe3GeTe2 electrodes. Nano Lett. 2019, 19, 5133–5139. [Google Scholar] [CrossRef]
- Zou, R.; Zhan, F.; Zheng, B.; Wu, X.; Fan, J.; Wang, R. Intrinsic quantum anomalous Hall phase induced by proximity in the van der Waals heterostructure germanene/Cr2 Ge2 Te6. Phys. Rev. B 2020, 101, 161108. [Google Scholar] [CrossRef]
- Song, T.; Cai, X.; Tu, M.W.-Y.; Zhang, X.; Huang, B.; Wilson, N.P.; Seyler, K.L.; Zhu, L.; Taniguchi, T.; Watanabe, K.; et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214–1218. [Google Scholar] [CrossRef]
- Wang, J.; Sun, F.; Yang, S.; Li, Y.; Zhao, C.; Xu, M.; Zhang, Y.; Zeng, H. Robust ferromagnetism in Mn-doped MoS2 nanostructures. Appl. Phys. Lett. 2016, 109, 1–6. [Google Scholar] [CrossRef]
- Fang, Q.; Zhao, X.; Huang, Y.; Xu, K.; Min, T.; Chu, P.K.; Ma, F. Structural stability and magnetic-exchange coupling in Mn-doped monolayer/bilayer MoS2. Phys. Chem. Chem. Phys. 2018, 20, 553–561. [Google Scholar] [CrossRef]
- Wang, S.; Robertson, A.; Warner, J.H. Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides. Chem. Soc. Rev. 2018, 47, 6764–6794. [Google Scholar] [CrossRef]
- Mishra, R.; Zhou, W.; Pennycook, S.J.; Pantelides, S.T.; Idrobo, J.-C.; Cheng, Y.C.; Zhu, Z.Y.; Mi, W.B.; Guo, Z.B.; Schwingenschlögl, U. Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 88, 144409. [Google Scholar] [CrossRef]
- Singh, A.; Price, C.C.; Shenoy, V.B. Magnetic Order, Electrical Doping, and Charge-State Coupling at Amphoteric Defect Sites in Mn-Doped 2D Semiconductors. ACS Nano 2022, 16, 9452–9460. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Li, X.; Chen, X.; Hu, K. Strain tuning of magnetism in Mn doped MoS2 monolayer. J. Phys. Condens. Matter 2014, 26, 256003. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhao, X.; Deng, L.; Shi, Z.; Liu, S.; Wei, Q.; Zhang, L.; Cheng, Y.; Zhang, L.; Lu, H.; et al. Enhanced Valley Zeeman Splitting in Fe-Doped Monolayer MoS2. ACS Nano 2020, 14, 4636–4645. [Google Scholar] [CrossRef]
- Lv, R.; Robinson, J.A.; Schaak, R.E.; Sun, D.; Sun, Y.; Mallouk, T.E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single-and few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56–64. [Google Scholar] [CrossRef]
- Lin, Y.-C.C.; Torsi, R.; Geohegan, D.B.; Robinson, J.A.; Xiao, K. Controllable Thin-Film Approaches for Doping and Alloying Transition Metal Dichalcogenides Monolayers. Adv. Sci. 2021, 8, 1–26. [Google Scholar] [CrossRef]
- Xia, B.; Liu, P.; Liu, Y.; Gao, D.; Xue, D.; Ding, J. Re doping induced 2H-1T phase transformation and ferromagnetism in MoS2 nanosheets. Appl. Phys. Lett. 2018, 113, 13101. [Google Scholar] [CrossRef]
- Chen, K.; Deng, J.; Kan, D.; Yan, Y.; Shi, Q.; Huo, W.; Song, M.; Yang, S.; Liu, J.Z. Ferromagnetic and nonmagnetic 1 T′ charge density wave states in transition metal dichalcogenides: Physical mechanisms and charge doping induced reversible transition. Phys. Rev. B 2022, 105, 24414. [Google Scholar] [CrossRef]
- Matsukura, F.; Ohno, H.; Shen, A.; Sugawara, Y. Transport properties and origin of ferromagnetism in (Ga, Mn) As. Phys. Rev. B 1998, 57, R2037. [Google Scholar] [CrossRef]
- Maiti, S.K. Electron transport through honeycomb lattice ribbons with armchair edges. Solid State Commun. 2009, 149, 973–977. [Google Scholar] [CrossRef]
- Kuivalainen, P. Spin-Dependent Transport in Heavily Mn-Doped GaAs. Phys. Status Solidi 2001, 227, 449–463. [Google Scholar] [CrossRef]
- Poltavtsev, S.V.; Dzhioev, R.I.; Korenev, V.L.; Akimov, I.A.; Kudlacik, D.; Yakovlev, D.R.; Bayer, M. Steplike spectral distribution of photoelectrons at the percolation threshold in heavily p-doped GaAs. Phys. Rev. B 2020, 102, 14204. [Google Scholar] [CrossRef]
- Kitchen, D.; Richardella, A.; Tang, J.-M.; Flatté, M.E.; Yazdani, A. Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. Nature 2006, 442, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, P.; Zunger, A. Ferromagnetism in Mn-doped GaAs due to substitutional-interstitial complexes. Phys. Rev. B 2003, 68, 75202. [Google Scholar] [CrossRef]
- Chen, L.; Yang, X.; Yang, F.; Zhao, J.; Misuraca, J.; Xiong, P.; von Molnár, S. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn) As to 200 K via nanostructure engineering. Nano Lett. 2011, 11, 2584–2589. [Google Scholar] [CrossRef]
- Kulatov, E.; Nakayama, H.; Mariette, H.; Ohta, H.; Uspenskii, Y.A. Electronic structure, magnetic ordering, and optical properties of GaN and GaAs doped with Mn. Phys. Rev. B 2002, 66, 45203. [Google Scholar] [CrossRef]
- Fu, S.; Kang, K.; Shayan, K.; Yoshimura, A.; Dadras, S.; Wang, X.; Zhang, L.; Chen, S.; Liu, N.; Jindal, A.; et al. Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping. Nat. Commun. 2020, 11, 6–13. [Google Scholar] [CrossRef]
- Ahmed, S.; Ding, X.; Murmu, P.P.; Bao, N.; Liu, R.; Kennedy, J.; Wang, L.L.L.; Ding, J.; Wu, T.; Vinu, A.; et al. High Coercivity and Magnetization in WSe2 by Codoping Co and Nb. Small 2020, 16, e1903173. [Google Scholar] [CrossRef]
- Zhang, F.; Zheng, B.; Sebastian, A.; Olson, H.; Liu, M.; Fujisawa, K.; Pham, Y.T.H.; Jimenez, V.O.; Kalappattil, V.; Miao, L.; et al. Monolayer vanadium-doped tungsten disulfide: A room-temperature dilute magnetic semiconductor. arXiv 2020, arXiv:2005.01965. [Google Scholar] [CrossRef]
- Briggs, N.; Subramanian, S.; Lin, Z.; Li, X.; Zhang, X.; Zhang, K.; Xiao, K.; Geohegan, D.; Wallace, R.; Chen, L.-Q.; et al. A roadmap for electronic grade 2D materials. 2D Mater. 2019, 6, 22001. [Google Scholar] [CrossRef]
- Zhou, J.; Lin, J.; Huang, X.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H.; Lei, J.; et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yao, Y.; Sendeku, M.G.; Yin, L.; Zhan, X.; Wang, F.; Wang, Z.; He, J. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019, 31, 1901694. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Ruiz, K.; Wang, Z.; Ciprian, M.; Zhu, M.; Tu, R.; Zhang, L.; Luo, W.; Fan, Y.; Jiang, W. Chemical vapor deposition mediated phase engineering for 2D transition metal dichalcogenides: Strategies and applications. Small Sci. 2022, 2, 2100047. [Google Scholar] [CrossRef]
- Yang, L.; Wu, H.; Zhang, L.; Zhang, W.; Li, L.; Kawakami, T.; Sugawara, K.; Sato, T.; Zhang, G.; Gao, P.; et al. Highly Tunable Near-Room Temperature Ferromagnetism in Cr-Doped Layered Td-WTe2. Adv. Funct. Mater. 2021, 31, 202008116. [Google Scholar] [CrossRef]
- Kang, K.; Fu, S.; Shayan, K.; Anthony, Y.; Dadras, S.; Yuzan, X.; Kazunori, F.; Terrones, M.; Zhang, W.; Strauf, S.; et al. The effects of substitutional Fe-doping on magnetism in MoS2 and WS2 monolayers. Nanotechnology 2021, 32, 095708. [Google Scholar] [CrossRef]
- Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P.M.; Yakobson, B.I.; Idrobo, J.-C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622. [Google Scholar] [CrossRef]
- Yun, S.J.; Duong, D.L.; Ha, D.M.; Singh, K.; Phan, T.L.; Choi, W.; Kim, Y.-M.M.; Lee, Y.H. Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv. Sci. 2020, 7, 1903076. [Google Scholar] [CrossRef]
- Shen, D.; Zhao, B.; Zhang, Z.; Zhang, H.; Yang, X.; Huang, Z.; Li, B.; Song, R.; Jin, Y.; Wu, R.; et al. Synthesis of Group VIII Magnetic Transition-Metal-Doped Monolayer MoSe2. ACS Nano 2022, 16, 10623–10631. [Google Scholar] [CrossRef]
- Tong, X.; Liu, K.; Zeng, M.; Fu, L. Vapor-phase growth of high-quality wafer-scale two-dimensional materials. InfoMat 2019, 1, 460–478. [Google Scholar] [CrossRef]
- Zhang, K.; Deng, D.D.; Zheng, B.; Wang, Y.; Perkins, F.K.; Briggs, N.C.; Crespi, V.H.; Robinson, J.A. Tuning transport and chemical sensitivity via niobium doping of synthetic MoS2. Adv. Mater. Interfaces 2020, 7, 2000856. [Google Scholar] [CrossRef]
- Stolz, S.; Kozhakhmetov, A.; Dong, C.; Gröning, O.; Robinson, J.A.; Schuler, B. Layer-dependent Schottky contact at van der Waals interfaces: V-doped WSe2 on graphene. npj 2D Mater. Appl. 2022, 6, 66. [Google Scholar] [CrossRef]
- Kozhakhmetov, A.; Schuler, B.; Tan, A.M.Z.; Cochrane, K.A.; Nasr, J.R.; El-Sherif, H.; Bansal, A.; Vera, A.; Bojan, V.; Redwing, J.M.; et al. Scalable Substitutional Re-Doping and its Impact on the Optical and Electronic Properties of Tungsten Diselenide. Adv. Mater. 2020, 2005159, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Stringfellow, G.B. Organometallic Vapor-Phase Epitaxy: Theory and Practice; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Xu, X.; Guo, T.; Kim, H.; Hota, M.K.; Alsaadi, R.S.; Lanza, M.; Zhang, X.; Alshareef, H.N. Growth of 2D materials at the wafer scale. Adv. Mater. 2022, 34, 2108258. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Guo, P.; Wang, C.; Tan, H.; Hu, W.; Yan, W.; Ma, C.; Cai, L.; Song, L.; Zhang, W.; et al. Beating the exclusion rule against the coexistence of robust luminescence and ferromagnetism in chalcogenide monolayers. Nat. Commun. 2019, 10, 1584. [Google Scholar] [CrossRef]
- Yang, L.; Wu, H.; Zhang, L.; Zhang, G.; Li, H.; Jin, W.; Zhang, W.; Chang, H. Tunable and Robust Near-Room-Temperature Intrinsic Ferromagnetism of a van der Waals Layered Cr-Doped 2H-MoTe2Semiconductor with an Out-of-Plane Anisotropy. ACS Appl. Mater. Interfaces 2021, 13, 31880–31890. [Google Scholar] [CrossRef]
- Wang, Y.; Cong, C.; Yang, W.; Shang, J.; Peimyoo, N.; Chen, Y.; Kang, J.; Wang, J.; Huang, W.; Yu, T. Strain-induced direct--indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562–2572. [Google Scholar] [CrossRef]
- Kang, W.T.; Lee, I.M.; Yun, S.J.; Song, Y.I.; Kim, K.; Kim, D.-H.; Shin, Y.S.; Lee, K.; Heo, J.; Kim, Y.-M.; et al. Direct growth of doping controlled monolayer WSe 2 by selenium-phosphorus substitution. Nanoscale 2018, 10, 11397–11402. [Google Scholar] [CrossRef]
- Sasaki, S.; Kobayashi, Y.; Liu, Z.; Suenaga, K.; Maniwa, Y.; Miyauchi, Y.; Miyata, Y. Growth and optical properties of Nb-doped WS2 monolayers. Appl. Phys. Express 2016, 9, 71201. [Google Scholar] [CrossRef]
- Moody, G.; Kavir Dass, C.; Hao, K.; Chen, C.-H.; Li, L.-J.; Singh, A.; Tran, K.; Clark, G.; Xu, X.; Berghäuser, G.; et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 2015, 6, 8315. [Google Scholar] [CrossRef]
- Xiao, D.; Yao, W.; Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 2007, 99, 236809. [Google Scholar] [CrossRef]
- Mak, K.F.; Xiao, D.; Shan, J. Light--valley interactions in 2D semiconductors. Nat. Photonics 2018, 12, 451–460. [Google Scholar] [CrossRef]
- Kabiraj, A.; Kumar, M.; Mahapatra, S. High-throughput discovery of high Curie point two-dimensional ferromagnetic materials. npj Comput. Mater. 2020, 6, 35. [Google Scholar] [CrossRef]
- Ahmed, S.; Ding, X.; Bao, N.; Bian, P.; Zheng, R.; Wang, Y.; Murmu, P.P.; Kennedy, J.V.; Liu, R.; Fan, H.; et al. Inducing High Coercivity in MoS2 Nanosheets by Transition Element Doping. Chem. Mater. 2017, 29, 9066–9074. [Google Scholar] [CrossRef]
- Krishnamoorthy, A.; Dinh, M.A.; Yildiz, B. Hydrogen weakens interlayer bonding in layered transition metal sulfide Fe 1+ x S. J. Mater. Chem. A 2017, 5, 5030–5035. [Google Scholar] [CrossRef]
- Sun, X.; Dai, J.; Guo, Y.; Wu, C.; Hu, F.; Zhao, J.; Zeng, X.; Xie, Y. Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale 2014, 6, 8359–8367. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, G.; Zhang, Y.; Cao, Z.; Wang, Y.; Cao, T.; Wang, C.; Cheng, B.; Zhang, W.; Wan, X.; et al. Tuning electrical conductance in bilayer MoS2 through defect-mediated interlayer chemical bonding. ACS Nano 2020, 14, 10265–10275. [Google Scholar] [CrossRef]
- Cai, Z.; Shen, T.; Zhu, Q.; Feng, S.; Yu, Q.; Liu, J.; Tang, L.; Zhao, Y.; Wang, J.; Liu, B.; et al. Dual-Additive Assisted Chemical Vapor Deposition for the Growth of Mn-Doped 2D MoS2 with Tunable Electronic Properties. Small 2020, 16, 1903181. [Google Scholar] [CrossRef]
- Shi, X.; Posysaev, S.; Huttula, M.; Pankratov, V.; Hoszowska, J.; Dousse, J.-C.; Zeeshan, F.; Niu, Y.; Zakharov, A.; Li, T.; et al. Metallic contact between MoS2 and Ni via Au nanoglue. Small 2018, 14, 1704526. [Google Scholar] [CrossRef]
- Yoo, H.; Heo, K.; Ansari, M.H.R.; Cho, S. Recent advances in electrical doping of 2D semiconductor materials: Methods, analyses, and applications. Nanomaterials 2021, 11, 832. [Google Scholar] [CrossRef]
- Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197–6206. [Google Scholar] [CrossRef]
- Deng, J.; Li, H.; Wang, S.; Ding, D.; Chen, M.; Liu, C.; Tian, Z.; Novoselov, K.S.; Ma, C.; Deng, D.; et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 2017, 8, 14430. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.-Y.; Wu, J.M. Localized surface plasmon resonance coupling with piezophototronic effect for enhancing hydrogen evolution reaction with Au@MoS2 nanoflowers. Nano Energy 2021, 87, 106131. [Google Scholar] [CrossRef]
- Tsai, C.; Abild-Pedersen, F.; Nørskov, J.K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 2014, 14, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Ruqia, B.; Kabiraz, M.K.; Hong, J.W.; Choi, S.-I. Catalyst activation: Surface doping effects of group VI transition metal dichalcogenides towards hydrogen evolution reaction in acidic media. J. Energy Chem. 2022, 72, 217–240. [Google Scholar] [CrossRef]
- Lin, Z.; McCreary, A.; Briggs, N.; Subramanian, S.; Zhang, K.; Sun, Y.; Li, X.; Borys, N.J.; Yuan, H.; Fullerton-Shirey, S.K. 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 2016, 3, 42001. [Google Scholar] [CrossRef]
- Rhodes, D.; Chae, S.H.; Ribeiro-Palau, R.; Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 2019, 18, 541–549. [Google Scholar] [CrossRef]
- Azadmanjiri, J.; Srivastava, V.K.; Kumar, P.; Sofer, Z.; Min, J.; Gong, J. Graphene-supported 2D transition metal dichalcogenide van der waals heterostructures. Appl. Mater. Today 2020, 19, 100600. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, M.; Yang, E.-H. Advances in Two-Dimensional Magnetic Semiconductors via Substitutional Doping of Transition Metal Dichalcogenides. Materials 2023, 16, 3701. https://doi.org/10.3390/ma16103701
Fang M, Yang E-H. Advances in Two-Dimensional Magnetic Semiconductors via Substitutional Doping of Transition Metal Dichalcogenides. Materials. 2023; 16(10):3701. https://doi.org/10.3390/ma16103701
Chicago/Turabian StyleFang, Mengqi, and Eui-Hyeok Yang. 2023. "Advances in Two-Dimensional Magnetic Semiconductors via Substitutional Doping of Transition Metal Dichalcogenides" Materials 16, no. 10: 3701. https://doi.org/10.3390/ma16103701