Homogeneous Zero-Index Thermal Metadevice for Thermal Camouflaging and Super-Expanding
Abstract
1. Introduction
2. Theoretical Analysis
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pendry, J.B.; Schurig, D.; Smith, D.R. Controlling electromagnetic fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hu, R.; Xi, W.; Liu, Y.; Tang, K.; Song, J.; Luo, X.; Wu, J.; Qiu, C.-W. Thermal camouflaging metamaterials. Mater. Today 2021, 45, 120–141. [Google Scholar] [CrossRef]
- Jin, Z.; Janoschka, D.; Deng, J.; Ge, L.; Dreher, P.; Frank, B.; Hu, G.; Ni, J.; Yang, Y.; Li, J.; et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 2021, 1, 5. [Google Scholar] [CrossRef]
- Yan, W.; Dong, C.; Xiang, Y.; Jiang, S.; Leber, A.; Loke, G.; Xu, W.; Hou, C.; Zhou, S.; Chen, M.; et al. Thermally drawn advanced functional fibers: New frontier of flexible electronics. Mater. Today 2020, 35, 168–194. [Google Scholar] [CrossRef]
- Alù, A.; Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 2005, 72, 016623. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Alù, A.; Engheta, N. Multifrequency optical invisibility cloak with layered plasmonic shells. Phys. Rev. Lett. 2008, 100, 113901. [Google Scholar] [CrossRef][Green Version]
- Li, Y.; Shen, X.; Wu, Z.; Huang, J.; Chen, Y.; Ni, Y.; Huang, J. Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes. Phys. Rev. Lett. 2015, 115, 195503. [Google Scholar] [CrossRef][Green Version]
- Xiao, Y.; Chen, Q.; Hao, Q. Inverse thermal design of nanoporous thin films for thermal cloaking. Mater. Today Phys. 2021, 21, 100477. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Li, T.; Wang, W.; Li, L.; Qiu, C.-W. Doublet thermal metadevice. Phys. Rev. Appl. 2019, 11, 044021. [Google Scholar] [CrossRef]
- Xu, G.; Dong, K.; Li, Y.; Li, H.; Liu, K.; Li, L.; Wu, J.; Qiu, C.-W. Tunable analog thermal material. Nat. Commun. 2020, 11, 6028. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Cao, P.; Yang, T.; Zhu, X.; Wang, W.; Qiu, C. A continuously tunable solid-like convective thermal metadevice on the reciprocal line. Adv. Mater. 2020, 32, 2003823. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Ren, X.; Sha, W.; Xiao, M.; Hu, R.; Luo, X. Inverse design of rotating metadevice for adaptive thermal cloaking. Int. J. Heat Mass Transf. 2021, 176, 121417. [Google Scholar] [CrossRef]
- Sha, W.; Xiao, M.; Zhang, J.; Ren, X.; Zhu, Z.; Zhang, Y.; Xu, G.; Li, H.; Liu, X.; Chen, X.; et al. Robustly printable freeform thermal metamaterials. Nat. Commun. 2021, 12, 7228. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, W.; Han, T.; Zheng, X.; Li, J.; Li, B.; Fan, S.; Qiu, C.-W. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 2021, 6, 488–507. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, K.-J.; Peng, Y.-G.; Li, W.; Yang, T.; Xu, H.-X.; Chen, H.; Zhu, X.-F.; Fan, S.; Qiu, C.-W. Thermal meta-device in analogue of zero-index photonics. Nat. Mater. 2019, 18, 48–54. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Huang, J.; Shen, X.; Jiang, C.; Wu, Z.; Huang, J. Thermal expander. Phys. B Condens. Matter 2017, 518, 56–60. [Google Scholar] [CrossRef]
- Xu, L.; Huang, J. Metamaterials for Manipulating Thermal Radiation: Transparency, Cloak, and Expander. Phys. Rev. Appl. 2019, 12, 044048. [Google Scholar] [CrossRef]
- Hu, R.; Zhou, S.; Li, Y.; Lei, D.; Luo, X.; Qiu, C.-W. Illusion thermotics. Adv. Mater. 2018, 30, e1707237. [Google Scholar] [CrossRef]
- Li, Y.; Bai, X.; Yang, T.; Luo, H.; Qiu, C.-W. Structured thermal surface for radiative camouflage. Nat. Commun. 2018, 9, 273. [Google Scholar] [CrossRef][Green Version]
- Hu, R.; Huang, S.; Wang, M.; Luo, X.; Shiomi, J.; Qiu, C.-W. Encrypted thermal printing with regionalization transformation. Adv. Mater. 2019, 31, e1807849. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Song, J.; Zhao, W.; Ren, X.; Cheng, Q.; Luo, X.; Fang, N.X.; Hu, R. Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. Nanophotonics 2020, 9, 855–863. [Google Scholar] [CrossRef][Green Version]
- Han, T.; Bai, X.; Thong, J.T.L.; Li, B.; Qiu, C.-W. Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials. Adv. Mater. 2014, 26, 1731–1734. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lai, Y.; Hang, Z.H.; Zheng, H.; Chan, C.T. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 2011, 10, 582–586. [Google Scholar] [CrossRef] [PubMed]
- Maas, R.; Parsons, J.; Engheta, N.; Polman, A. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat. Photon. 2013, 7, 907–912. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J. Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects. Appl. Phys. Lett. 2013, 102, 183105. [Google Scholar] [CrossRef][Green Version]
- Li, Y.; Kita, S.; Muñoz, P.; Reshef, O.; Vulis, D.I.; Yin, M.; Lončar, M.; Mazur, E. On-chip zero-index metamaterials. Nat. Photon. 2015, 9, 738–742. [Google Scholar] [CrossRef]
- Alam, M.Z.; De Leon, I.; Boyd, R.W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 2016, 352, 795–797. [Google Scholar] [CrossRef]
- Alam, M.Z.; Schulz, S.A.; Upham, J.; De Leon, I.; Boyd, R.W. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat. Photon. 2018, 12, 79–83. [Google Scholar] [CrossRef][Green Version]
- Xu, L.J.; Yang, S.; Huang, J.P. Effectively infinite thermal conductivity and zero-index thermal cloak. EPL 2020, 131, 24002. [Google Scholar] [CrossRef]
- Chu, H.; Li, Q.; Liu, B.; Luo, J.; Sun, S.; Hang, Z.H.; Zhou, L.; Lai, Y. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light. Sci. Appl. 2018, 7, 50. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yang, S.; Wang, J.; Dai, G.; Yang, F.; Huang, J. Controlling macroscopic heat transfer with thermal metamaterials: Theory, experiment and application. Phys. Rep. 2021, 908, 1–65. [Google Scholar] [CrossRef]
- Han, T.; Bai, X.; Gao, D.; Thong, J.; Li, B.; Qiu, C.-W. Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 2014, 112, 054302. [Google Scholar] [CrossRef][Green Version]
- Han, T.; Yang, P.; Li, Y.; Lei, D.; Li, B.; Hippalgaonkar, K.; Qiu, C.-W. Full-parameter omnidirectional thermal metadevices of anisotropic geometry. Adv. Mater. 2018, 30, e1804019. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xu, L.J.; Wang, R.Z.; Huang, J.P. Full control of heat transfer in single-particle structural materials. Appl. Phys. Lett. 2017, 111, 121908. [Google Scholar] [CrossRef][Green Version]
- Li, Y.; Qi, M.; Li, J.; Cao, P.-C.; Wang, D.; Zhu, X.-F.; Qiu, C.-W.; Chen, H. Heat transfer control using a thermal analogue of coherent perfect absorption. Nat. Commun. 2022, 13, 2683. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Xu, G.; Tian, D.; Qu, Z.; Qiu, C.-W. Passive Ultra-Conductive Thermal Metamaterials. Adv. Mater. 2022, 34, 2200329. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Liu, K.; Liu, T.; Hu, R. Homogeneous Zero-Index Thermal Metadevice for Thermal Camouflaging and Super-Expanding. Materials 2023, 16, 3657. https://doi.org/10.3390/ma16103657
Li H, Liu K, Liu T, Hu R. Homogeneous Zero-Index Thermal Metadevice for Thermal Camouflaging and Super-Expanding. Materials. 2023; 16(10):3657. https://doi.org/10.3390/ma16103657
Chicago/Turabian StyleLi, Huagen, Kaipeng Liu, Tianfeng Liu, and Run Hu. 2023. "Homogeneous Zero-Index Thermal Metadevice for Thermal Camouflaging and Super-Expanding" Materials 16, no. 10: 3657. https://doi.org/10.3390/ma16103657
APA StyleLi, H., Liu, K., Liu, T., & Hu, R. (2023). Homogeneous Zero-Index Thermal Metadevice for Thermal Camouflaging and Super-Expanding. Materials, 16(10), 3657. https://doi.org/10.3390/ma16103657