Epitaxial SiC Dosimeters and Flux Monitoring Detectors for Proton Therapy Beams
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IAEA—International Atomic Energy Agency. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water, Technical Reports Series No.398. 2000. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/TRS398_scr.pdf (accessed on 3 April 2023).
- Schüller, A.; Heinrich, S.; Fouillade, C.; Subiel, A.; De Marzi, L.; Romano, F.; Peier, P.; Trachsel, M.; Fleta, C.; Kranzer, R.; et al. The European Joint Research Project UHDpulse—Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates. Phys. Med. 2020, 80, 134–150. [Google Scholar] [CrossRef] [PubMed]
- McManus, M.; Romano, F.; Lee, N.D.; Farabolini, W.; Gilardi, A.; Royle, G.; Palmans, H.; Subiel, A. The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate Very High Energy Electron beams. Sci. Rep. 2020, 10, 9089. [Google Scholar] [CrossRef]
- Chopra, V.; Dhoble, N.S.; Dhoble, S.J.; Poelman, D. New Challenges in Radiation Dosimetry and Possible Materials, Radiation Dosimetry Phosphors; Chapter 19, 2019 Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Sawston, UK, 2022; pp. 509–524. [Google Scholar] [CrossRef]
- Hattori, K.; Inaba, Y.; Kato, T.; Fujisawa, M.; Yasuno, H.; Yamada, Y.; Haga, Y.; Suzuki, M.; Zuguchi, M.; Chida, K. Evaluation of a New Real-Time Dosimeter Sensor for Interventional Radiology Staff. Sensors 2023, 23, 512. [Google Scholar] [CrossRef]
- Bruzzi, M. Novel Silicon Devices for Radiation Therapy Monitoring. Nucl. Instr. Meth. Phys. Res. 2016, 809, 105. [Google Scholar] [CrossRef]
- Bruzzi, M.; Bucciolini, M.; Pini, S.; Russo, S. Advanced materials in radiation dosimetry. Nucl. Instr. Meth. Phys. Res. 2002, 485, 172–177. [Google Scholar] [CrossRef]
- Klein, C.A. Bandgap Dependence and Related Features of Radiation Ionization Energies in Semiconductors. J. Appl. Phys. 1968, 39, 2029. [Google Scholar] [CrossRef]
- Bruzzi, M.; Sadrozinski, H.-F.W.; Seiden, A. Comparing radiation tolerant materials and devices for ultra rad-hard tracking detectors. Nucl. Instr. Meth. Phys. Res. 2007, 579, 754–761. [Google Scholar] [CrossRef]
- Bruzzi, M.; Nava, F.; Pini, S.; Russo, S. High quality SiC applications in radiation dosimetry. Appl. Surf. Sci. 2001, 184, 425–430. [Google Scholar] [CrossRef]
- Bruzzi, M.; De Angelis, C.; Scaringella, M.; Talamonti, C.; Viscomi, D.; Bucciolini, M. Zero-bias operation of polycrystalline chemically vapour deposited diamond films for Intensity Modulated Radiation Therapy. Diam. Rel. Mat. 2011, 20, 84–92. [Google Scholar] [CrossRef]
- Kagan, H.; Alexopoulos, A.; Artuso, M.; Bachmair, F.; Bäni, L.; Bartosik, M.; Beacham, J.; Beck, H.; Bellini, V.; Belyaev, V.; et al. Diamond detector technology, status and perspectives. Nucl. Inst. Methods Phys. Res. 2019, 924, 297–300. [Google Scholar] [CrossRef]
- Bäni, L.; Alexopoulos, A.; Artuso, M.; Bachmair, F.; Bartosik, M.; Beacham, J.; Beck, H.; Bellini, V.; Belyaev, V.; Bentele, B.; et al. Diamond detectors for high energy physics experiments. J. Instrum. 2018, 13, C01029. [Google Scholar] [CrossRef]
- De Napoli, M. SiC detectors: A review on the use of silicon carbide as radiation detection material. Front. Phys. 2022, 10, 769. [Google Scholar] [CrossRef]
- PTW-FreiburgGMBH, LorracherStr.779115, Freiburg, Germany. Available online: https://:www.ptw.de (accessed on 3 April 2023).
- Menichelli, D.; Scaringella, M.; Moscatelli, F.; Bruzzi, M.; Nipoti, R. Characterization of energy levels related to impurities in epitaxial 4H-SiC ion implanted p+n junctions. Diam. Rel. Mat. 2007, 16, 6–11. [Google Scholar] [CrossRef]
- Owens, A.; Peacock, A. Compound Semiconductor radiation Detectors. Nucl. Instr. Meth. Phys. Res. 2004, 531, 18–37. [Google Scholar] [CrossRef]
- Bruzzi, M.; Talamonti, C.; Calisi, N.; Caporali, S.; Vinattieri, A. First proof-of-principle of inorganic perovskites clinical radiotherapy dosimeters. APL Mater. 2019, 7, 051101. [Google Scholar] [CrossRef]
- Bruzzi, M.; Calisi, N.; Enea, N.; Verroi, E.; Vinattieri, A. CsPbCl3 inorganic perovskite thin-film detectors for real-time monitoring in protontherapy. Front. Phys. 2023, 11, 51. [Google Scholar] [CrossRef]
- Bruzzi, M.; Talamonti, C. Characterization of Crystalline CsPbBr3 Perovksite Dosimeters for Clinical Radiotherapy. Front. Phys. 2021, 9, 625282. [Google Scholar] [CrossRef]
- Bruzzi, M.; Gabelloni, F.; Calisi, N.; Caporali, S.; Vinattieri, A. Defective States in Micro-Crystalline CsPbBr3 and Their Role on Photoconductivity. Nanomaterials 2019, 9, 177. [Google Scholar] [CrossRef]
- Bruzzi, M.; Falsini, N.; Calisi, N.; Vinattieri, A. Electrically active defects in polycrystalline and single crystal metal halide perovskite. Energies 2020, 13, 1643. [Google Scholar] [CrossRef]
- Bruzzi, M.; Nava, F.; Russo, S.; Sciortino, S.; Vanni, P. Characterisation of silicon carbide detectors response to electron and photon irradiation. Diam. Rel. Mat. 2001, 10, 657–661. [Google Scholar] [CrossRef]
- Petringa, G.; Cirrone, G.A.P.; Altana, C.; Puglia, S.M.; Tudisco, S. First characterization of a new Silicon Carbide detector for dosimetric applications. IoP J. Instr. 2020, 15, C05023. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Yanagisawa, R.; Osaki, K.; Ohki, Y.; Matsumura, A.; Sakai, M.; Makino, T.; Ohshima, T.; Kada, W. Linear energy transfer (LET) spectroscopy and relative biological effect estimation by SiC-based dosimeter at clinical carbon-beam cancer therapy field. J. Phys. Conf. Ser. 2022, 2326, 012015. [Google Scholar] [CrossRef]
- Christanell, M.; Tomaschek, M.; Bergauer, T. MedAustron 4H-silicon carbide as particle detector for high-intensity ion beams. IoP J. Instr. 2022, 17, C01060. [Google Scholar] [CrossRef]
- Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W.J.; et al. Proton beam characterization in the experimental room of the Trento Proton Therapy facility. Nucl. Inst. Meth. Phys. Res. 2017, 869, 15–20. [Google Scholar] [CrossRef]
- Nava, F.; Vanni, P.; Bruzzi, M.; Lagomarsino, S.; Sciortino, S.; Wagner, G.; Lanzieri, C. Minimum Ionizing and Alpha Particles Detectors Based on Epitaxial Semiconductor Silicon Carbide. IEEE Trans. Nucl. Sci. 2004, 51, 1. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruzzi, M.; Verroi, E. Epitaxial SiC Dosimeters and Flux Monitoring Detectors for Proton Therapy Beams. Materials 2023, 16, 3643. https://doi.org/10.3390/ma16103643
Bruzzi M, Verroi E. Epitaxial SiC Dosimeters and Flux Monitoring Detectors for Proton Therapy Beams. Materials. 2023; 16(10):3643. https://doi.org/10.3390/ma16103643
Chicago/Turabian StyleBruzzi, Mara, and Enrico Verroi. 2023. "Epitaxial SiC Dosimeters and Flux Monitoring Detectors for Proton Therapy Beams" Materials 16, no. 10: 3643. https://doi.org/10.3390/ma16103643
APA StyleBruzzi, M., & Verroi, E. (2023). Epitaxial SiC Dosimeters and Flux Monitoring Detectors for Proton Therapy Beams. Materials, 16(10), 3643. https://doi.org/10.3390/ma16103643