Structural, Magnetic and Vibrational Properties of Van Der Waals Ferromagnet CrBr3 at High Pressure
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. X-ray Diffraction
3.2. Neutron Diffraction
3.3. Raman Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of Intrinsic Ferromagnetism in Two-Dimensional van Der Waals Crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-Dependent Ferromagnetism in a van Der Waals Crystal down to the Monolayer Limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burch, K.S.; Mandrus, D.; Park, J.G. Magnetism in Two-Dimensional van Der Waals Materials. Nature 2018, 563, 47–52. [Google Scholar] [CrossRef]
- Zhang, W.; Wong, P.K.J.; Zhu, R.; Wee, A.T.S. Van Der Waals Magnets: Wonder Building Blocks for Two-Dimensional Spintronics? InfoMat 2019, 1, 479–495. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.C.; Huang, C.C.; Cheung, C.H.; Chen, C.Y.; Tan, S.G.; Huang, T.W.; Zhao, Y.; Zhao, Y.; Wu, G.; Feng, Y.P.; et al. Prospects and Opportunities of 2D van Der Waals Magnetic Systems. Ann. Phys. 2020, 532, 1900452. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.B.; Qu, Q.; Zhu, P.; Lam, C.H. Robust Intrinsic Ferromagnetism and Half Semiconductivity in Stable Two-Dimensional Single-Layer Chromium Trihalides. J. Mater. Chem. C 2015, 3, 12457–12468. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D Materials and van Der Waals Heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [Green Version]
- Soriano, D.; Katsnelson, M.I.; Fernández-Rossier, J. Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Lett. 2020, 20, 6225–6234. [Google Scholar] [CrossRef]
- Song, T.; Fei, Z.; Yankowitz, M.; Lin, Z.; Jiang, Q.; Hwangbo, K.; Zhang, Q.; Sun, B.; Taniguchi, T.; Watanabe, K.; et al. Switching 2D Magnetic States via Pressure Tuning of Layer Stacking. Nat. Mater. 2019, 18, 1298–1302. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Jiang, S.; Sivadas, N.; Wang, Z.; Xu, Y.; Weber, D.; Goldberger, J.E.; Watanabe, K.; Taniguchi, T.; Fennie, C.J.; et al. Pressure-Controlled Interlayer Magnetism in Atomically Thin CrI3. Nat. Mater. 2019, 18, 1303–1308. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Q.J.; Xu, B.; Hu, J. Effect of Biaxial Strain and Hydrostatic Pressure on the Magnetic Properties of Bilayer CrI3. Front. Phys. 2021, 16, 53502. [Google Scholar] [CrossRef]
- Haines, C.R.S.; Coak, M.J.; Wildes, A.R.; Lampronti, G.I.; Liu, C.; Nahai-Williamson, P.; Hamidov, H.; Daisenberger, D.; Saxena, S.S. Pressure-Induced Electronic and Structural Phase Evolution in the van Der Waals Compound FePS3. Phys. Rev. Lett. 2018, 121, 266801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Chaturvedi, S.; Tripathy, D.; Grover, S.; Singh, R.; Muthu, D.V.S.; Sampath, S.; Waghmare, U.V.; Sood, A.K. Raman and First-Principles Study of the Pressure-Induced Mott-Insulator to Metal Transition in Bulk FePS3. J. Phys. Chem. Solids 2022, 164, 110607. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, J.; Zhou, Z.; Sun, J.; Wen, T.; Zhou, Y.; Li, N.; Zhang, Q.; Han, F.; Xiao, Y.; et al. Emergent Superconductivity in an Iron-Based Honeycomb Lattice Initiated by Pressure-Driven Spin-Crossover /639/638/298/924 /639/301/119/1003 /120 /128 /145 Article. Nat. Commun. 2018, 9, 1914. [Google Scholar] [CrossRef] [Green Version]
- Coak, M.J.; Jarvis, D.M.; Hamidov, H.; Wildes, A.R.; Paddison, J.A.M.; Liu, C.; Haines, C.R.S.; Dang, N.T.; Kichanov, S.E.; Savenko, B.N.; et al. Emergent Magnetic Phases in Pressure-Tuned van Der Waals Antiferromagnet FePS3. Phys. Rev. X 2021, 11, 11024. [Google Scholar] [CrossRef]
- Cai, W.; Sun, H.; Xia, W.; Wu, C.; Liu, Y.; Liu, H.; Gong, Y.; Yao, D.X.; Guo, Y.; Wang, M. Pressure-Induced Superconductivity and Structural Transition in Ferromagnetic CrSiTe3. Phys. Rev. B 2020, 102, 144525. [Google Scholar] [CrossRef]
- Lin, Z.; Lohmann, M.; Ali, Z.A.; Tang, C.; Li, J.; Xing, W.; Zhong, J.; Jia, S.; Han, W.; Coh, S.; et al. Pressure-Induced Spin Reorientation Transition in Layered Ferromagnetic Insulator Cr2Ge2Te6. Phys. Rev. Mater. 2018, 2, 051004. [Google Scholar] [CrossRef]
- Mondal, S.; Kannan, M.; Das, M.; Govindaraj, L.; Singha, R.; Satpati, B.; Arumugam, S.; Mandal, P. Effect of Hydrostatic Pressure on Ferromagnetism in Two-Dimensional CrI3. Phys. Rev. B 2019, 99, 180407. [Google Scholar] [CrossRef] [Green Version]
- Valenta, J.; Kratochvílová, M.; Míšek, M.; Carva, K.; Kaštil, J.; DoleŽal, P.; Opletal, P.; Čermák, P.; Proschek, P.; Uhlířová, K.; et al. Pressure-Induced Large Increase of Curie Temperature of the van Der Waals Ferromagnet VI3. Phys. Rev. B 2021, 103, 054424. [Google Scholar] [CrossRef]
- Sun, Y.; Xiao, R.C.; Lin, G.T.; Zhang, R.R.; Ling, L.S.; Ma, Z.W.; Luo, X.; Lu, W.J.; Sun, Y.P.; Sheng, Z.G. Effects of Hydrostatic Pressure on Spin-Lattice Coupling in Two-Dimensional Ferromagnetic Cr2Ge2Te6. Appl. Phys. Lett. 2018, 112, 072409. [Google Scholar] [CrossRef]
- Yoshida, H.; Chiba, J.; Kaneko, T.; Fujimori, Y.; Abe, S. Pressure Effect on the Curie Temperature of CrBr3. Phys. B Condens. Matter 1997, 237–238, 525–526. [Google Scholar] [CrossRef]
- Ding, S.; Liang, Z.; Yang, J.; Yun, C.; Zhang, P.; Li, Z.; Xue, M.; Liu, Z.; Tian, G.; Liu, F.; et al. Ferromagnetism in Two-Dimensional Fe3GeTe2; Tunability by Hydrostatic Pressure. Phys. Rev. B 2021, 103, 94429. [Google Scholar] [CrossRef]
- Ghosh, A.; Singh, D.; Aramaki, T.; Mu, Q.; Borisov, V.; Kvashnin, Y.; Haider, G.; Jonak, M.; Chareev, D.; Medvedev, S.A.; et al. Exotic Magnetic and Electronic Properties of Layered Formula Presented Single Crystals under High Pressure. Phys. Rev. B 2022, 105, L081104. [Google Scholar] [CrossRef]
- Hong, M.; Dai, L.; Hu, H.; Zhang, X.; Li, C.; He, Y. Pressure-Induced Structural Phase Transition and Metallization of CrCl3 under Different Hydrostatic Environments up to 50.0 GPa. Inorg. Chem. 2022, 61, 4852–4864. [Google Scholar] [CrossRef]
- Ahmad, A.S.; Liang, Y.; Dong, M.; Zhou, X.; Fang, L.; Xia, Y.; Dai, J.; Yan, X.; Yu, X.; Dai, J.; et al. Pressure-Driven Switching of Magnetism in Layered CrCl3. Nanoscale 2020, 12, 22935–22944. [Google Scholar] [CrossRef]
- Kozlenko, D.P.; Lis, O.N.; Kichanov, S.E.; Lukin, E.V.; Belozerova, N.M.; Savenko, B.N. Spin-Induced Negative Thermal Expansion and Spin–Phonon Coupling in van Der Waals Material CrBr3. Npj. Quantum Mater. 2021, 6, 19. [Google Scholar] [CrossRef]
- Wu, J.; Yao, Y.; Lin, M.L.; Rösner, M.; Du, Z.; Watanabe, K.; Taniguchi, T.; Tan, P.H.; Haas, S.; Wang, H. Spin–Phonon Coupling in Ferromagnetic Monolayer Chromium Tribromide. Adv. Mater. 2022, 34, e2108506. [Google Scholar] [CrossRef]
- Liu, S.; Long, M.Q.; Wang, Y.P. Negative Thermal Expansion of Two-Dimensional Magnets. Appl. Phys. Lett. 2022, 120, 072403. [Google Scholar] [CrossRef]
- Kozlenko, D.; Kichanov, S.; Lukin, E.; Savenko, B. The DN-6 Neutron Diffractometer for High-Pressure Research at Half a Megabar Scale. Crystals 2018, 8, 331. [Google Scholar] [CrossRef] [Green Version]
- Kozlenko, D.P.; Kichanov, S.E.; Lukin, E.V.; Savenko, B.N. High-Pressure Neutron Diffraction Study of the Crystal and Magnetic Structure of Materials at the Pulsed Reactor IBR-2: Current Opportunities and Prospects. Crystallogr. Rep. 2021, 66, 303–313. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B Phys. Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Olmos, R.; Alam, S.; Chang, P.H.; Gandha, K.; Nlebedim, I.C.; Cole, A.; Tafti, F.; Zope, R.R.; Singamaneni, S.R. Pressure Dependent Magnetic Properties on Bulk CrBr3 Single Crystals. J. Alloys Compd. 2022, 911, 165034. [Google Scholar] [CrossRef]
- Yu, Z.; Xia, W.; Xu, K.; Xu, M.; Wang, H.; Wang, X.; Yu, N.; Zou, Z.; Zhao, J.; Wang, L.; et al. Pressure-Induced Structural Phase Transition and a Special Amorphization Phase of Two-Dimensional Ferromagnetic Semiconductor Cr2Ge2Te6. J. Phys. Chem. C 2019, 123, 13885–13891. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Yu, Z.; Xia, W.; Xu, M.; Mai, X.; Wang, L.; Guo, Y.; Miao, X.; Xu, M. Unique 2D-3D Structure Transformations in Trichalcogenide CrSiTe3 under High Pressure. J. Phys. Chem. C 2020, 124, 15600–15606. [Google Scholar] [CrossRef]
- Birch, F. Equation of State and Thermodynamic Parameters of NaCl to 300 Kbar in the High-Temperature Domain. J. Geophys. Res. 1986, 91, 4949. [Google Scholar] [CrossRef]
- Cai, W.; Yan, L.; Chong, S.K.; Xu, J.; Zhang, D.; Deshpande, V.V.; Zhou, L.; Deemyad, S. Pressure-Induced Metallization in the Absence of a Structural Transition in the Layered Ferromagnetic Insulator Cr2Ge2Te6. Phys. Rev. B 2022, 106, 085116. [Google Scholar] [CrossRef]
- Fumega, A.O.; Blanco-Canosa, S.; Babu-Vasili, H.; Gargiani, P.; Li, H.; Zhou, J.S.; Rivadulla, F.; Pardo, V. Electronic Structure and Magnetic Exchange Interactions of Cr-Based van Der Waals Ferromagnets. A Comparative Study between CrBr3 and Cr2Ge2Te6. J. Mater. Chem. C 2020, 8, 13582–13589. [Google Scholar] [CrossRef]
- Bermudezt, V.M. Unit-cell vibrational spectra of chromium trichoride and chromium tribromide. Solid State Commun. 1976, 19, 693–697. [Google Scholar] [CrossRef]
- Larson, D.T.; Kaxiras, E. Raman Spectrum of CrI3: An Ab Initio Study. Phys. Rev. B 2018, 98, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Yin, T.; Ulman, K.A.; Liu, S.; Granados del Águila, A.; Huang, Y.; Zhang, L.; Serra, M.; Sedmidubsky, D.; Sofer, Z.; Quek, S.Y.; et al. Chiral Phonons and Giant Magneto-Optical Effect in CrBr3 2D Magnet. Adv. Mater. 2021, 33, 2101618. [Google Scholar] [CrossRef]
Mode Symmetry | ν0 (cm−1) | (cm−1/GPa) | |
---|---|---|---|
73.4 | 2.27 (P < 6 GPa) 1.23 (P > 6 GPa) | 0.71 (P < 6 GPa) 1.45 (P > 6 GPa) | |
106.05 | 4.0 (P < 6 GPa) 1.22 (P > 6 GPa) | 0.87 (P < 6 GPa) 0.96 (P > 6 GPa) | |
M1 | 116.08 | 2.82 | 2.29 |
142.18 | 1.33 | 0.22 | |
149.6 | 2.64 | 0.4 | |
184.8 | 3.57 | 0.44 | |
279.56 | 3.39 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lis, O.; Kozlenko, D.; Kichanov, S.; Lukin, E.; Zel, I.; Savenko, B. Structural, Magnetic and Vibrational Properties of Van Der Waals Ferromagnet CrBr3 at High Pressure. Materials 2023, 16, 454. https://doi.org/10.3390/ma16010454
Lis O, Kozlenko D, Kichanov S, Lukin E, Zel I, Savenko B. Structural, Magnetic and Vibrational Properties of Van Der Waals Ferromagnet CrBr3 at High Pressure. Materials. 2023; 16(1):454. https://doi.org/10.3390/ma16010454
Chicago/Turabian StyleLis, Olga, Denis Kozlenko, Sergey Kichanov, Evgenii Lukin, Ivan Zel, and Boris Savenko. 2023. "Structural, Magnetic and Vibrational Properties of Van Der Waals Ferromagnet CrBr3 at High Pressure" Materials 16, no. 1: 454. https://doi.org/10.3390/ma16010454
APA StyleLis, O., Kozlenko, D., Kichanov, S., Lukin, E., Zel, I., & Savenko, B. (2023). Structural, Magnetic and Vibrational Properties of Van Der Waals Ferromagnet CrBr3 at High Pressure. Materials, 16(1), 454. https://doi.org/10.3390/ma16010454