Enhanced Catalytic Effect of Ti2CTx-MXene on Thermal Decomposition Behavior of Ammonium Perchlorate
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Thermal Decomposition of Pure AP
3.2. The Catalytic Activity of Ti2CTx
3.3. Catalytic Mechanism of Ti2CTx
- (1)
- electrons (e−) transfer from ClO4− to NH4+:
- (2)
- protons (H+) transfer from NH4+ to ClO4−:
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional transition metal carbides. Acs Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Gasso, S.; Sohal, M.K.; Mahajan, A. MXene modulated SnO2 gas sensor for ultra-responsive room-temperature detection of NO2. Sensor. Actuat. B Chem. 2022, 357, 131427. [Google Scholar] [CrossRef]
- Zhu, Y.; Lei, Y.; Ming, F.; Abou-Hamad, E.; Emwas, A.; Hedhili, M.N.; Alshareef, H.N. Heterostructured MXene and g-C3N4 for high-rate lithium intercalation. Nano Energy 2019, 65, 104030. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, W.; Yuan, H.; Jin, C.; Zhang, L.; Huang, H.; Liang, C.; Xia, Y.; Zhang, J.; Gan, Y.; et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. Acs Nano 2017, 11, 2459–2469. [Google Scholar] [CrossRef]
- Li, J.; Yuan, X.; Lin, C.; Yang, Y.; Xu, L.; Du, X.; Xie, J.; Lin, J.; Sun, J. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 2017, 7, 1602725. [Google Scholar] [CrossRef]
- Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H.N. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 2018, 8, 1703043. [Google Scholar] [CrossRef]
- Peng, C.; Li, X.; Jiang, P.; Peng, W.; Tang, J.; Li, L.; Ye, L.; Pan, S.; Chen, S. Thermoresponsive MXene composite system with high adsorption capacity for quick and simple removal of toxic metal ions from aqueous environment. J. Hazard. Mater. 2022, 440, 12970. [Google Scholar] [CrossRef]
- Cao, S.; Shen, B.; Tong, T.; Fu, J.; Yu, J. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136. [Google Scholar] [CrossRef]
- Huang, B.; Yang, J.; Ren, G.; Qian, Y.; Zhang, Y. Design of single-atom catalysts on S-functionalized MXenes for enhanced activity and selectivity in N2 electroreduction. Appl. Catal. A Gen. 2022, 646, 118886. [Google Scholar] [CrossRef]
- Yang, D.; Mo, W.; Zhang, S.; Li, B.; Hu, D.; Chen, S. A graphene oxide functionalized energetic coordination polymer possesses good thermostability, heat release and combustion catalytic performance for ammonium perchlorate. Dalton Trans. 2020, 49, 1582–1590. [Google Scholar] [CrossRef] [PubMed]
- Fertassi, M.A.; Alali, K.T.; Qi, L.; Li, R.; Liu, P.; Liu, J.; Liu, L.; Wang, J. Catalytic effect of CuO nanoplates, graphene (G)/CuO nanocomposite and Al/G/CuO composite on the thermal decomposition of ammonium perchlorate. RSC Adv. 2016, 6, 74155–74161. [Google Scholar] [CrossRef]
- Zhou, L.; Cao, S.; Zhang, L.; Xiang, G.; Wang, J.; Zeng, X.; Chen, J. Facet effect of Co3O4 nanocatalysts on the catalytic decomposition of ammonium perchlorate. J. Hazard. Mater. 2020, 392, 122358–122365. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.; Zhou, X.; Liu, X.; Gou, B.; Hu, Y.; Xiao, L. Catalytic activity of nano-sized CuO on AP-CMDB propellant. J. Energetic Mater. 2019, 37, 484–495. [Google Scholar] [CrossRef]
- Chen, J.; Huang, B.; Liu, Y.; Qiao, Z.; Li, X.; Lv, G.; Yang, G. 3D hierarchically ordered porous carbon entrapped Ni nanoparticles as a highly active catalyst for the thermal decomposition of ammonium perchlorate. Energetic Mater. Front. 2021, 2, 14–21. [Google Scholar] [CrossRef]
- Wen, T.; Feng, Y.; Bi, Y.; Xu, L.; Guo, C. 3D porous nano Co3O4/C composite catalyst for the thermal decomposition of ammonium perchlorate. Mater. Today Commun. 2022, 33, 104294. [Google Scholar] [CrossRef]
- Zhao, H.; Lv, J.; Xu, H.; Zhao, X.; Jia, X.; Tan, L. In-situ synthesis of MXene/ZnCo2O4 nanocomposite with enhanced catalytic activity on thermal decomposition of ammonium perchlorate. J. Solid State Chem. 2019, 279, 120947. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, L.; Li, Z.; Zhou, A.; Hu, Q.; Cao, X. Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate. Solid State Sci. 2014, 35, 62–65. [Google Scholar] [CrossRef]
- Li, K.; Lei, Y.; Liao, J.; Huang, S.; Zhang, Y.; Zhu, W. Design of three dimensional flower-like MXene/manganese-cobalt spinel nanocomposites for efficient catalytic thermal decomposition of ammonium perchlorate. Ceram. Int. 2021, 47, 33269–33279. [Google Scholar] [CrossRef]
- Tan, L.; Lv, J.; Xu, X.; Zhao, H.; He, C.; Wang, H.; Zheng, W. Construction of MXene/NiO composites through in-situ precipitation strategy for dispersibility improvement of NiO nanoparticles. Ceram. Int. 2019, 45, 6597–6600. [Google Scholar] [CrossRef]
- Zhu, L.; Lv, J.; Yu, X.; Zhao, H.; Sun, C.; Zhou, Z.; Ying, Y.; Tan, L. Further construction of MnO2 composite through in-situ growth on MXene surface modified by carbon coating with outstanding catalytic properties on thermal decomposition of ammonium perchlorate. Appl. Surf. Sci. 2020, 502, 144171. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; Cheng, J.; Liu, Z.; Li, Q.; Li, W.; Yang, X.; Xiao, B. Monolayer Ti2CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. Acs Appl. Mater. Interfaces 2015, 7, 13707–13713. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, Z.; Xue, J.; Qian, Y.; Zhang, L.; Caro, J.; Wang, H. Titanium carbide Ti3C2Tx (MXene) enhanced PAN nanofiber membrane for air purification. J. Membr. Sci. 2019, 586, 162–169. [Google Scholar] [CrossRef]
- Yang, D.; Fan, X.; Zhao, D.; An, Y.; Hu, Y.; Luo, Z. Sc2CO2 and Mn-doped Sc2CO2 as gas sensor materials to NO and CO: A first-principles study. Phys. E 2019, 111, 84–90. [Google Scholar] [CrossRef]
- Ma, S.; Yuan, D.; Jiao, Z.; Wang, T.; Dai, X. Monolayer Sc2CO2: A promising candidate as a SO2 gas sensor or capturer. J. Phys. Chem. C 2017, 121, 24077–24084. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Shukla, V.; Jena, N.K.; Luo, W.; Ahuja, R. Exploring two-dimensional M2NS2 (M = Ti, V) MXenes based gas sensors for air pollutants. Appl. Mater. Today 2020, 19, 100574. [Google Scholar] [CrossRef]
- Heath, G.A.; Majer, J.R. Mass spectrometric study of the thermal decomposition of ammonium perchlorate. Trans. Faraday Soc. 1964, 60, 1783–1791. [Google Scholar] [CrossRef]
- Mallick, L.; Kumar, S.; Chowdhury, A. Thermal decomposition of ammonium perchlorate-A TGA-FTIR-MS study: Part I, Thermochim. Acta 2015, 610, 57–68. [Google Scholar] [CrossRef]
- Longuet, B.; Gillard, P. Experimental investigation on the heterogeneous kinetic process of the low thermal decomposition of ammonium perchlorate particles. Propell. Explos. Pyrot. 2009, 34, 59–71. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, Y.; Liu, Y.; Zhao, Y.; Zhang, Z.; Zhang, K.; Mo, Z.; Wang, C.; Gao, S. Atomic catalyst supported on oxygen defective MXenes for synergetic electrocatalytic nitrate reduction to ammonia: A first principles study. Appl. Surf. Sci. 2023, 614, 156077. [Google Scholar] [CrossRef]
- Wang, X.; You, F.; Wu, L.; Ji, R.; Wen, X.; Fan, B.; Tong, G.; Chen, D.; Wu, W. Enhanced heat conductance and microwave absorption of 2D laminated Ti3C2Tx MXene microflakes via steering surface, defects, and interlayer spacing. J. Alloys Compd. 2022, 918, 165740. [Google Scholar] [CrossRef]
- Li, J.; Du, Y.; Huo, C.; Wang, S.; Cui, C. Thermal stability of two-dimensional Ti2C nanosheets. Ceram. Int. 2015, 41, 2631–2635. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, Y.; Wang, L.; Dai, X.; Fei, Y. Free-standing Ti3C2Tx MXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity. Chem. Eng. J. 2020, 384, 123329. [Google Scholar] [CrossRef]
- Compos, E.A.; Fernandes, M.T.C.; Kawachi, E.Y.; Oliveira, J.I.S.D.; Dutra, R.D.C.L. Chemical and textural characterization of iron oxide nanoparticles and their effect on the thermal decomposition of ammonium perchlorate. Propell. Explos. Pyrot. 2015, 40, 860–866. [Google Scholar] [CrossRef]
- Li, K.; Liao, J.; Huang, S.; Lei, Y.; Zhang, Y.; Zhu, W. Enhanced catalytic properties of cobaltosic oxide through constructing MXene-supported nanocomposites for ammonium perchlorate thermal decomposition. Appl. Surf. Sci. 2021, 507, 151224. [Google Scholar] [CrossRef]
- Ye, B.; Li, K.; Feng, C.; An, C.; Wang, J.; Zhang, Y. Efficient promotion of Calliandra haematocephala flower-like MXene/ZnCo2O4 nanocomposites on thermal decomposition of ammonium perchlorate. Vacuum 2023, 207, 111509. [Google Scholar] [CrossRef]
- Liu, L.; Li, F.; Yang, Y.; Tan, L.; Li, M. Effects of metal and composite metal nanopowders on the thermal decomposition of ammonium perchlorate (AP) and the ammonium perchlorate/hydroxyterminated polybutadiene (AP/HTPB) composite solid propellant. Chin. J. Chem. Eng. 2004, 12, 595–598. [Google Scholar]
- Naguib, M.; Mashtalir, O.; Lukatskaya, M.R.; Dyatkin, B.; Zhang, C.; Presser, V.; Gogotsi, Y.; Barsoum, M.W. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun. 2014, 50, 7420–7423. [Google Scholar] [CrossRef]
- Zou, G.; Liu, B.; Guo, J.; Zhang, Q.; Femandez, C.; Peng, Q. Synthesis of nanoflower-shaped MXene derivative with unexpected catalytic activity for dehydrogenation of sodium alanates. ACS Appl. Mater. Interfaces 2017, 9, 7611–7618. [Google Scholar] [CrossRef]
- Berger, H.; Tang, H.; Lévy, F. Growth and Raman spectroscopic characterization of TiO2 anatase single crystals. J. Cryst. Growth 1993, 130, 108–112. [Google Scholar] [CrossRef]
- Yamamoto, S.; Bluhm, H.; Andersson, K.; Ketteler, G.; Ogasawara, H.; Salmeron, M.; Nilsson, A. In situ X-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions. J. Phys. -Condens. Mat. 2008, 20, 184025. [Google Scholar] [CrossRef]
- Schier, V.; Michel, H.J.; Halbritter, J. ARXPS-analysis of sputtered TiC, SiC and Ti0.5Si0.5C layers. Fresen. J. Anal. Chem. 1993, 346, 227–232. [Google Scholar] [CrossRef]
- Santerre, F.; El Khakani, M.A.; Chaker, M.; Dodelet, J.P. Properties of TiC thin films grown by pulsed laser deposition. Appl. Surf. Sci. 1999, 148, 24–33. [Google Scholar] [CrossRef]
- Diebold, U.; Madey, T.E. TiO2 by XPS. Surf. Sci. Spectra 1996, 4, 227–231. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database; Wiley: Etobicoke, ON, Canada, 1992. [Google Scholar]
- Ernst, K.H.; Grman, D.; Hauert, R.; Hollander, E. Fluorine-induced corrosion of aluminium microchip bond pads: An XPS and AES analysis. Surf. Interface Anal. 1994, 21, 691–696. [Google Scholar] [CrossRef]
- Popova, I.; Zhukov, V.; Yates, J.T. Depth-dependent electrical impedance distribution in Al2O3 films on Al(111) detection of an inner barrier layer. Langmuir 2000, 16, 10309–10314. [Google Scholar] [CrossRef]
- Myhra, S.; Crossley, J.A.A.; Barsoum, M.W. Crystal-chemistry of the Ti3AlC2 and Ti4AlN3 layered carbide/nitride phases-characterization by XPS. J. Phys. Chem. Solids 2001, 62, 811–817. [Google Scholar] [CrossRef]
- Jayaweera, P.M.; Quah, E.L.; Idriss, H. Photoreaction of ethanol on TiO2 (110) single-crystal surface. J. Phys. Chem. C 2007, 111, 1764–1769. [Google Scholar] [CrossRef]
- Mousty-Desbuquoit, C.; Riga, J.; Verbist, J.J. Electronic structure of titanium(III) and titanium(IV) halides studied by solid-phase X-ray photoelectron spectroscopy. Inorg. Chem. 1987, 26, 1212–1217. [Google Scholar] [CrossRef]
- Rudloff, W.K.; Freeman, E.S. The catalytic effects of metal oxides on thermal decomposition reactions, III. J. Therm. Anal. Calorim. 1980, 18, 359–369. [Google Scholar] [CrossRef]
- Stephens, M.A.; Petersen, E.L.; Carro, R.; Reid, D.L.; Seal, S. Multi-parameter study of nanoscale TiO2 and CeO2 additives in composite AP/HTPB solid propellants. Propell. Explos. Pyrot. 2010, 35, 143–152. [Google Scholar] [CrossRef]
- Seiyama, T.; Egashira, M.; Iwamoto, M. Some theoretical problem of catalysis; Tokyo University Press: Tokyo, Japan, 1973; p. 35. [Google Scholar]
- Eslami, A.; Juibari, N.M.; Hosseini, S.G. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate. Mater. Chem. Phys. 2016, 181, 12–20. [Google Scholar] [CrossRef]
- Benhammada, A.; Trache, D. Thermal decomposition of energetic materials using TG-FTIR and TG-MS: A state-of-the-art review. Appl. Spectrosc. Rev. 2020, 55, 724–777. [Google Scholar] [CrossRef]
- Venkateshalu, S.; Grace, A. MXenes-A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond. Appl. Mater. Today 2020, 18, 100509. [Google Scholar] [CrossRef]
Materials | Content (wt.%) | Reduction in HTD Temperature ( °C ) | Increase in Decomposition Heat (J/g) | Reference |
---|---|---|---|---|
Ti2CTx | 30 | 83 | 1897.3 | This work |
MXene(Ti3C2Tx) | 2 | 12.4 | - | [18] |
MXene/Cu2O | 121.4 | |||
MXene/MnCo2O4.5 | 4 | 131.7 | 1132.4 | [19] |
MXene(Ti3C2Tx) | 2 | 10.2 | - | [20] |
MXene/NiO | 50.6 | |||
MnO2/MXene(Ti3C2Tx) | 2 | 128.8 | - | [21] |
MXene (Ti3C2Tx) | 2 | 28.1 | 49.5 | [35] |
Co3O4@MXene | 108.9 | 1162.7 | ||
MXene (Ti3C2Tx) | 2 | 38.8 | 73.6 | [36] |
MXene/ZnCo2O4 | 138.3 | 1079.2 |
Location | Region | BE [eV] | FWHM [eV] | Fraction | Assigned to | Reference |
---|---|---|---|---|---|---|
Surface | Ti 2p3/2 (2p1/2) | 457.2 (462.9) | 2.1 (2.1) | 0.21 | Ti3+ | [42] |
458.6 (464.2) | 0.9 (1.0) | 0.79 | TiO2 | [43,44] | ||
O 1s | 529.9 | 1.0 | 0.38 | TiO2 | [41,44] | |
531.2 | 1.4 | 0.18 | C-Ti-Ox | [41,45] | ||
532.0 | 1.1 | 0.40 | C-Ti-(OH)x | [41,45] | ||
532.8 | 1.2 | 0.01 | Al2O3 | [45,46,47] | ||
533.8 | 2.0 | 0.03 | H2Oads | [41,45] | ||
C 1s | 282 | 1.0 | 0.38 | C-Ti-Tx | [42,48] | |
284.7 | 1.6 | 0.52 | C-C | [49] | ||
286.3 | 1.4 | 0.10 | CHx/C-O | [49] | ||
Inner (after 10 s sputtering) | Ti 2p3/2 (2p1/2) | 454.8 (461.0) | 1.0 (1.9) | 0.32 | Ti | [42,48] |
455.9 (461.5) | 2.2 (2.4) | 0.20 | Ti2+ | [42] | ||
457.5 (463.2) | 2.3 (2.0) | 0.41 | Ti3+ | [42] | ||
459.0 (464.7) | 1.0 (1.1) | 0.03 | TiO2 | [43,44] | ||
460.4 (466.1) | 2.1 (2.9) | 0.04 | C-Ti-Fx | [50] | ||
O 1s | 530.3 | 1.1 | 0.07 | TiO2 | [41,44] | |
531.2 | 1.2 | 0.38 | C-Ti-Ox | [41,45] | ||
531.9 | 1.1 | 0.51 | C-Ti-(OH) | [41,45] | ||
533.7 | 1.7 | 0.04 | H2Oads | [41,45] | ||
C 1s | 282.0 | 0.6 | 0.69 | C-Ti-Tx | [42,48] | |
284.6 | 1.8 | 0.30 | C-C | [49] | ||
286.5 | 1.4 | 0.01 | CHx/C-O | [49] | ||
F 1s | 685.2 | 1.8 | 0.41 | C-Ti-Fx | [50] | |
686.2 | 1.6 | 0.31 | AlFx | [46] | ||
687.3 | 2.5 | 0.28 | Al(OF)x | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Du, Y.; Wang, X.; Zhi, X. Enhanced Catalytic Effect of Ti2CTx-MXene on Thermal Decomposition Behavior of Ammonium Perchlorate. Materials 2023, 16, 344. https://doi.org/10.3390/ma16010344
Li J, Du Y, Wang X, Zhi X. Enhanced Catalytic Effect of Ti2CTx-MXene on Thermal Decomposition Behavior of Ammonium Perchlorate. Materials. 2023; 16(1):344. https://doi.org/10.3390/ma16010344
Chicago/Turabian StyleLi, Jingxiao, Yulei Du, Xiaoyong Wang, and Xuge Zhi. 2023. "Enhanced Catalytic Effect of Ti2CTx-MXene on Thermal Decomposition Behavior of Ammonium Perchlorate" Materials 16, no. 1: 344. https://doi.org/10.3390/ma16010344
APA StyleLi, J., Du, Y., Wang, X., & Zhi, X. (2023). Enhanced Catalytic Effect of Ti2CTx-MXene on Thermal Decomposition Behavior of Ammonium Perchlorate. Materials, 16(1), 344. https://doi.org/10.3390/ma16010344