A Review on the Effect of Fabric Reinforcement on Strength Enhancement of Natural Fiber Composites
Abstract
:1. Introduction
2. Disadvantages of Composites including Short Natural Fibers
3. Woven Natural Fiber Composite
3.1. Mechanical Properties
3.2. Dynamic Mechanical Properties
3.3. Free Vibration Behaviour
4. Effect of Hybridization
4.1. Hybridization of Natural Fiber with Man-Made Fiber
4.2. Hybridization of Natural Fiber with Natural Fiber
4.3. Hybridization of Natural Fiber with Filler
4.4. Intra-Ply Hybridization
5. Braided Reinforcement
6. Knitted Reinforcement
7. Conclusions and Future Scope
- The influence of reinforcement on the strength improvement of natural fiber composites was thoroughly examined in this report. Short natural fiber reinforcement with random orientations provides poor resistance under loading due to high-stress concentration and rapid crack propagation. Thus, it increases the water-absorbing behavior and reduces the composites’ mechanical properties due to the significant surface contact of cellulosic natural fiber with moisture available in the environment.
- On the other hand, woven reinforcement enhances the tensile, flexural, and impact strength of natural fiber composite due to the presence of natural fiber in continuous yarn form. Thus, it increases the rigidity of the reinforcement and enriches the properties of the composite. However, it reduces the modulus value of the composites due to the high crimp in the fiber yarn in the warp and weft directions. In addition, various chemical and physical surface treatments were reviewed, and it was shown that they increase the interfacial bonding between fiber and matrix. Further, the hybridization of natural fiber with synthetic fiber, cellulosic fiber, and various fillers was reviewed.
- Furthermore, sophisticated weaving techniques such as braiding and knitting were reviewed, with the conclusion that braided composites significantly improve the characteristics of the composite material.
- Knitted composites, on the other hand, improve the energy dissipation capabilities of the composite materials, implying that braided fabric composites could be used in biological and structural applications.
- In future, natural fiber-reinforced composites should be further studied for their fatigue properties and biocompatible properties for possible considerations in biomedical fields such as orthopedic bone plates, total hip replacement, and prosthesis applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foulk, J.A.; Akin, D.E.; Dodd, R.B. New Low Cost Flax Fibers for Composites. SAE Technol. Pap. Ser. 2000, 1, 1133. [Google Scholar] [CrossRef]
- Venkateshwaran, N.; Elayaperumal, A. Banana Fiber Reinforced Polymer Composites—A Review. J. Reinf. Plast. Compos. 2010, 29, 2387–2396. [Google Scholar] [CrossRef]
- Joshi, S.V.; Drzal, L.T.; Mohanty, A.K.; Arora, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 2004, 35, 371–376. [Google Scholar] [CrossRef]
- Holbery, J.; Houston, D. Natural-fiber-reinforced polymer composites in automotive applications. JOM 2006, 58, 80–86. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Gargiullo, L.; Del Chierico, F.; D’Argenio, P.; Putignani, L. Gut microbiota modulation for multidrug-resistant organism decoloni-zation: Present and future perspectives. Front. Microbiol. 2019, 10, 1704. [Google Scholar] [CrossRef]
- Al-Oqla, F.M. Sapuan, S.M. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 2014, 66, 347–354. [Google Scholar] [CrossRef]
- Arthanarieswaran, V.P.; Kumaravel, A.; Kathirselvam, M. Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization. Mater. Des. 2014, 64, 194–202. [Google Scholar] [CrossRef]
- Soundhar, A.; Jayakrishna, K. Investigations on mechanical and morphological characterization of chitosan reinforced polymer nanocomposites. Mater. Res. Express 2019, 6, 1–23. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Ghani, M.U.; Siddique, A.; Abraha, K.G.; Yao, L.; Li, W.; Khan, M.Q.; Kim, I.S. Performance Evaluation of Jute/Glass-Fiber-Reinforced Polybutylene Succinate (PBS) Hybrid Composites with Different Layering Configurations. Materials 2022, 15, 1055. [Google Scholar] [CrossRef] [PubMed]
- Sen, T.; Reddy, H.J. Strengthening of RC beams in flexure using natural jute fibre textile reinforced composite system and its comparative study with CFRP and GFRP strengthening systems. Int. J. Sustain. Built Environ. 2013, 2, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Sapuan, S.M.; Maleque, M.A. Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand. Mater. Des. 2005, 26, 65–71. [Google Scholar] [CrossRef]
- Alves, C.; Ferrão, P.; Silva, A.J.; Reis, L.G.; Freitas, M.; Rodrigues, L.B.; Alves, D.E. Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod. 2010, 18, 313–327. [Google Scholar] [CrossRef]
- Davoodi, M.M.; Sapuan, M.S.M.; Ahmad, D.; Ali, A.; Khalina, A.; Jonoobi, M. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater. Des. 2010, 31, 4927–4932. [Google Scholar] [CrossRef]
- Damodaran, A.; Mansour, H.; Lessard, L.; Scavone, G.; Babu, A.S. Application of composite materials to the chenda, an Indian percussion instrument. Appl. Acoust. 2015, 88, 1–5. [Google Scholar] [CrossRef]
- Wu, M.; Shuai, H.; Cheng, Q.; Jiang, L. Bioinspired green composite lotus fibers. Angew. Chem. Int. Ed. 2014, 53, 3358–3361. [Google Scholar] [CrossRef]
- Kumar, R.; Zhang, L. Aligned ramie fiber reinforced arylated soy protein composites with improved properties. Compos. Sci. Technol. 2009, 69, 555–560. [Google Scholar] [CrossRef]
- Shahzad, A. Hemp fiber and its composites–A review. J. Compos. Mater. 2012, 46, 973–986. [Google Scholar] [CrossRef]
- Fadel, S.M.; Hassan, M.L.; Oksman, K. Improving tensile strength and moisture barrier properties of gelatin using microfibrillated cellulose. J. Compos. Mater. 2013, 47, 1977–1985. [Google Scholar] [CrossRef]
- O’Donnell, A.; Dweib, M.; Wool, R. Natural fiber composites with plant oil-based resin. Compos. Sci. Technol. 2004, 64, 1135–1145. [Google Scholar] [CrossRef]
- Abral, H.; Kadriadi, D.; Rodianus, A.; Mastariyanto, P.; Ilhamdi; Arief, S.; Sapuan, S.; Ishak, M. Mechanical properties of water hyacinth fibers—Polyester composites before and after immersion in water. Mater. Des. 2014, 58, 125–129. [Google Scholar] [CrossRef]
- Mayandi, K.; Rajini, N.; Pitchipoo, P.; Sreenivasan, V.; Jappes, J.W.; Alavudeen, A. A comparative study on characterisations of Cissus quadrangularis and Phoenix reclinata natural fibres. J. Reinf. Plast. Compos. 2015, 34, 269–280. [Google Scholar] [CrossRef]
- Karakoti, A.; Soundhar, A.; Rajesh, M.; Jayakrishna, K.; Hameed, M.T. Enhancement of mechanical properties of an epoxy composite reinforced with Hibiscuss sabdariffa var. altissima fiber micro cellulose. Int. J. Recent Technol. 2019, 8, 477–480. [Google Scholar] [CrossRef]
- Rudnik, E.; Briassoulis, D. Comparative Biodegradation in Soil Behaviour of two Biodegradable Polymers Based on Renewable Resources. J. Polym. Environ. 2011, 19, 18–39. [Google Scholar] [CrossRef]
- Almeida, J.R.; Monterio, S.N.; Terrones, L.A. Mechanical properties of coir/polyester composites. Elsevier Polym. Test. 2008, 27, 591–595. [Google Scholar]
- Joseph, P.V.; Joseph, K.; Thomas, S. Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypro-pylene composites. Compos. Sci. Technol. 1999, 59, 1625–1640. [Google Scholar] [CrossRef]
- Arib, R.M.; Sapuan, S.M.; Ahmad, M.M.; Paridah, M.T.; Zaman, H.K. Mechanical properties of pineapple leaf fibre reinforced poly-propylene composites. Mater. Des. 2006, 27, 391–396. [Google Scholar] [CrossRef]
- El-Shekeil, Y.A.; Sapuan, S.M.; Abdan, K.; Zainudin, E.S. Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Compos. Part B Eng. 2012, 43, 245–254. [Google Scholar] [CrossRef]
- Idicula, M.; Malhotra, S.K.; Joseph, K.; Thomas, S. Dynamic mechanical analysis of randomly oriented intimately mixed short ba-nana/sisal hybrid fibre reinforced polyester composites. Compos. Sci. Tech. 2005, 65, 1077–1087. [Google Scholar] [CrossRef]
- Doan, T.-T.-L.; Brodowsky, H.; Mäder, E. Jute fibre/polypropylene composites II. Thermal, hydrothermal and dynamic mechanical behaviour. Compos. Sci. Technol. 2007, 67, 2707–2714. [Google Scholar] [CrossRef]
- Pothan, L.A.; Oommen, Z.; Thomas, S. Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos. Sci. Technol. 2003, 63, 283–293. [Google Scholar] [CrossRef]
- Kumar, K.S.; Siva, I.; Jeyaraj, P.; Jappes, J.W.; Amico, S.C.; Rajini, N. Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams. Mater. Des. 2014, 56, 379–386. [Google Scholar] [CrossRef]
- El-Tayeb, N. A study on the potential of sugarcane fibers/polyester composite for tribological applications. Wear 2008, 265, 223–235. [Google Scholar] [CrossRef]
- Shalwan, A.; Yousif, B.F. In State of Art: Mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater. Des. 2013, 48, 14–24. [Google Scholar] [CrossRef]
- Yousif, B.F.; El-Tayeb, N.S.M. The effect of oil palm fibers as reinforcement on tribological performance of polyester composite. Surf. Rev. Lett. 2007, 14, 1095–1102. [Google Scholar] [CrossRef]
- Suarez, S.A.; Gibson, R.F.; Sun, C.T.; Chaturvedi, S.K. The influence of fiber length and fiber orientation on damping and stiffness of polymer composite materials. Exp. Mech. 1986, 26, 175–184. [Google Scholar] [CrossRef]
- John, M.J.; Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Thomas, S.; Pothan, L.A.; Cherian, B.M. Natural fibre reinforced polymer composites: From macro to nanoscale. Arch. Contemp. 2009, 36, 317–333. [Google Scholar] [CrossRef]
- Alavudeen, A.; Rajini, N.; Karthikeyan, S.; Thiruchitrambalam, M.; Venkateshwaren, N. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Mater. Des. 2015, 66, 246–257. [Google Scholar] [CrossRef]
- Ramesh, M.; Deepa, C. Processing of Green Composites. In Textile Science and Clothing Technology; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2018; pp. 47–72. [Google Scholar]
- Saheb, D.N.; Jog, J.P. Natural fiber polymer composites: A review. Adv. Polym. Technol. J. Polym. Process. Inst. 1999, 18, 351–363. [Google Scholar] [CrossRef]
- Juárez, C.; Durán, A.; Valdez-Tamez, P.L.; Fajardo, G. Performance of “Agave lecheguilla” natural fiber in portland cement composites exposed to severe environment conditions. Build. Environ. 2007, 42, 1151–1157. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Mamun, A.A.; Faruk, O. Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites. Express Polym. Lett. 2007, 1, 755–762. [Google Scholar] [CrossRef]
- Yan, L.; Kasal, B.; Huang, L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. Part B Eng. 2016, 92, 94–132. [Google Scholar] [CrossRef]
- Asim, M.; Jawaid, M.; Abdan, K.; Ishak, M.R.; Alothman, O.Y. Effect of Hybridization on the Mechanical Properties of Pineapple Leaf Fiber/Kenaf Phenolic Hybrid Composites. J. Renew. Mater. 2018, 6, 38–46. [Google Scholar] [CrossRef]
- Mwaikambo, L.Y.; Martuscelli, E.; Avella, M. Kapok/cotton fabric–polypropylene composites. Polym. Test. 2000, 19, 905–918. [Google Scholar] [CrossRef]
- Sapuan, S.; Leenie, A.; Harimi, M.; Beng, Y. Mechanical properties of woven banana fibre reinforced epoxy composites. Mater. Des. 2006, 27, 689–693. [Google Scholar] [CrossRef]
- Bennet, C.; Rajini, N.; Winowlin Jappes, J.T.; Venkatesh, A.; Harinarayanan, S.; Vinothkumar, G. Effect of Lamina Fiber Orientation on Tensile and Free Vibration (by Impulse Hammer Technique) Properties of Coconut Sheath/Sansevieria cylindrica Hybrid Composites. AMR 2014, 984–985, 172–177. [Google Scholar] [CrossRef]
- Carmisciano, S.; De Rosa, I.M.; Sarasini, F.; Tamburrano, A.; Valente, M. Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties. Mater. Des. 2011, 32, 337–342. [Google Scholar] [CrossRef]
- Venkateshwaran, N.; ElayaPerumal, A.; Raj, R.A. Mechanical and dynamic mechanical analysis of woven banana/epoxy com-posite. J. Polym. Environ. 2012, 20, 565–572. [Google Scholar] [CrossRef]
- Mariatti, M.; Jannah, M.; Abu Bakar, A.; Khalil, H.A. Properties of Banana and Pandanus Woven Fabric Reinforced Unsaturated Polyester Composites. J. Compos. Mater. 2008, 42, 931–941. [Google Scholar] [CrossRef]
- Khan, G.A.; Terano, M.; Gafur, M.; Alam, M.S. Studies on the mechanical properties of woven jute fabric reinforced poly(l-lactic acid) composites. J. King Saud Univ.—Eng. Sci. 2016, 28, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Rajesh, M.; Pitchaimani, J. Mechanical Properties of Natural Fiber Braided Yarn Woven Composite: Comparison with Conventional Yarn Woven Composite. J. Bionic Eng. 2017, 14, 141–150. [Google Scholar] [CrossRef]
- Goutianos, S.; Peijs, T.; Nystrom, B.; Skrifvars, M.O.V. Development of Flax Fibre based Textile Reinforcements for Composite Applications. Appl. Compos. Mater. 2006, 13, 199–215. [Google Scholar] [CrossRef] [Green Version]
- Pothan, L.A.; Mai, Y.-W.; Thomas, S.; Li, R. Tensile and Flexural Behavior of Sisal Fabric/Polyester Textile Composites Prepared by Resin Transfer Molding Technique. J. Reinf. Plast. Compos. 2008, 27, 1847–1866. [Google Scholar] [CrossRef]
- Shibata, S.; Cao, Y.; Fukumoto, I. Flexural modulus of the unidirectional and random composites made from biodegradable resin and bamboo and kenaf fibres. Compos. Part A Appl. Sci. Manuf. 2008, 39, 640–646. [Google Scholar] [CrossRef]
- Chandekar, H.; Chaudhari, V.; Waigaonkar, S. A review of jute fiber reinforced polymer composites. Mater. Today Proc. 2020, 26, 2079–2082. [Google Scholar] [CrossRef]
- Darshan, S.M.; Suresha, B. Effect of basalt fiber hybridization on mechanical properties of silk fiber reinforced epoxy composites. Mater. Today Proc. 2020, 43, 986–994. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Sulong, A.B.; Radzi, M.K.F.M.; Ismail, N.; Raza, M.; Muhamad, N.; Khan, M.A. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Prog. Nat. Sci. 2016, 26, 657–664. [Google Scholar] [CrossRef]
- Gupta, M.; Srivastava, R. Tensile and Flexural Properties of Sisal Fibre Reinforced Epoxy Composite: A Comparison between Unidirectional and Mat form of Fibres. Procedia Mater. Sci. 2014, 5, 2434–2439. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; Huang, H.; Wu, G.; Sun, E.; Jin, X.; Tang, W. The characteristic changes of rice straw fibers in anaerobic digestion and its effect on rice straw-reinforced composites. Ind. Crop. Prod. 2018, 121, 73–79. [Google Scholar] [CrossRef]
- Odusote, J.K.; Oyewo, A.T. Mechanical properties of pineapple leaf fiber reinforced polymer composites for application as a prosthetic socket. J. Eng. Technol. 2016, 7, 125–139. [Google Scholar]
- Hidalgo-Salazar, M.A.; Salinas, E. Mechanical, thermal, viscoelastic performance and product application of PP-rice husk Co-lombian biocomposites. Compos. Part B Eng. 2019, 176, 107135. [Google Scholar] [CrossRef]
- Ferrandez-Garcia, M.T.; Ferrandez-Garcia, C.E.; Garcia-Ortuño, T.; Ferrandez-Garcia, A.; Ferrandez-Villena, M. Experimental Evaluation of a New Giant Reed (Arundo donax L.) Composite Using Citric Acid as a Natural Binder. Agronomy 2019, 9, 882. [Google Scholar] [CrossRef] [Green Version]
- Georgiopoulos, P.; Christopoulos, A.; Koutsoumpis, S.; Kontou, E. The effect of surface treatment on the performance of flax/biodegradable composites. Compos. Part B Eng. 2016, 106, 88–98. [Google Scholar] [CrossRef]
- Sathishkumar, T.; Naveen, J.; Navaneethakrishnan, P.; Satheeshkumar, S.; Rajini, N. Characterization of sisal/cotton fibre woven mat reinforced polymer hybrid composites. J. Ind. Text. 2016, 47, 429–452. [Google Scholar] [CrossRef]
- Thiagamani, S.M.K.; Krishnasamy, S.; Muthukumar, C.; Tengsuthiwat, J.; Nagarajan, R.; Siengchin, S.; Ismail, S.O. Investigation into mechanical, absorption and swelling behaviour of hemp/sisal fibre reinforced bioepoxy hybrid composites: Effects of stacking sequences. Int. J. Biol. Macromol. 2019, 140, 637–646. [Google Scholar] [CrossRef]
- Soundhar, A.; Kandasamy, J. Mechanical, Chemical and Morphological Analysis of Crab shell/Sisal Natural Fiber Hybrid Composites. J. Nat. Fibers 2021, 18, 1518–1532. [Google Scholar] [CrossRef]
- James, D.J.D.; Manoharan, S.; Saikrishnan, G.; Arjun, S. Influence of bagasse/sisal fibre stacking sequence on the mechanical characteristics of hybrid-epoxy composites. J. Nat. Fibers 2020, 17, 1497–1507. [Google Scholar] [CrossRef]
- Chaudhary, V.; Bajpai, P.K.; Maheshwari, S. An investigation on wear and dynamic mechanical behavior of jute/hemp/flax reinforced composites and its hybrids for tribological applications. Fibers Polym. 2018, 19, 403–415. [Google Scholar] [CrossRef]
- Krishnan, G.S.; Shanmugasundar, G.; Vanitha, M.; Sivashanmugam, N. Mechanical Properties of Chemically Treated Banana and Ramie Fibre Reinforced Polypropylene Composites. IOP Conf. Series Mater. Sci. Eng. 2020, 961, 012013. [Google Scholar] [CrossRef]
- Balaji, A.; Sivaramakrishnan, K.; Karthikeyan, B.; Purushothaman, R.; Swaminathan, J.; Kannan, S.; Udhayasankar, R.; Madieen, A.H. Study on mechanical and morphological properties of sisal/banana/coir fiber-reinforced hybrid polymer composites. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 386. [Google Scholar] [CrossRef]
- Ibrahim, H.; Farag, M.; Megahed, H.; Mehanny, S. Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers. Carbohydr. Polym. 2014, 101, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Grewal, J.S.; Singh, T.; Kumar, N. Mechanical and thermal properties of chemically treated Kenaf natural fiber rein-forced polymer composites. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Ravindran, S.; Sozhamannan, G.G.; Saravanan, L.; Venkatachalapathy, V.S. Study on mechanical behaviour of natural fiber rein-forced vinylester hybrid composites. Mater. Today Proc. 2021, 45, 4526–4530. [Google Scholar] [CrossRef]
- Krishnan, G.S.; Shanmugasundar, G.; Vanitha, M.; Srinivasan, S.; Suresh, G. Investigation on the Mechanical and Morphological Properties of Red banana/Ramie Fiber vinyl ester composites. IOP Conf. Series Mater. Sci. Eng. 2020, 961, 012015. [Google Scholar] [CrossRef]
- Karaduman, Y.; Onal, L.; Rawal, A. Effect of stacking sequence on mechanical properties of hybrid flax/jute fibers reinforced thermoplastic composites. Polym. Compos. 2015, 36, 2167–2173. [Google Scholar] [CrossRef]
- Kumar, S.M.S.; Duraibabu, D.; Subramanian, K. Studies on mechanical, thermal and dynamics mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites. Mater. Des. 2014, 59, 63–69. [Google Scholar] [CrossRef]
- Ganesh, S.; Gunda, Y.; Mohan, S.R.; Raghunathan, V.; Dhilip, J.D. Influence of stacking sequence on the mechanical and water absorption characteristics of areca sheath-palm leaf sheath fibers reinforced epoxy composites. J. Nat. Fibers 2020, 1–11. [Google Scholar] [CrossRef]
- Khan, T.; Sultan, M.T.H.; Shah, A.U.M.; Ariffin, A.H.; Jawaid, M. The Effects of Stacking Sequence on the Tensile and Flexural Properties of Kenaf/Jute Fibre Hybrid Composites. J. Nat. Fibers 2021, 18, 452–463. [Google Scholar] [CrossRef]
- Sathish, P.; Kesavan, R.; Ramnath, B.V.; Vishal, C. Effect of Fiber Orientation and Stacking Sequence on Mechanical and Thermal Characteristics of Banana-Kenaf Hybrid Epoxy Composite. Silicon 2017, 9, 577–585. [Google Scholar] [CrossRef]
- Rajesh, M.; Pitchaimani, J. Dynamic mechanical analysis and free vibration behavior of intra-ply woven natural fiber hybrid polymer composite. J. Reinf. Plast. Compos. 2015, 35, 228–242. [Google Scholar] [CrossRef]
- Aziz, S.H.; Ansell, M.P. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1—Polyester resin matrix. Compos. Sci. Technol. 2004, 64, 1219–1230. [Google Scholar] [CrossRef]
- Herrera-Franco, P.J.; Valadez-González, A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B Eng. 2005, 36, 597–608. [Google Scholar] [CrossRef]
- Geethamma, V.G.; Kalaprasad, G.; Groeninckx, G.; Thomas, S. Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1499–1506. [Google Scholar] [CrossRef]
- Hossain, M.K.; Dewan, M.W.; Hosur, M.; Jeelani, S. Mechanical performances of surface modified jute fiber reinforced biopol nanophased green composites. Compos. Part B Eng. 2011, 42, 1701–1707. [Google Scholar] [CrossRef]
- Essabir, H.; Elkhaoulani, A.; Benmoussa, K.; Bouhfid, R.; Arrakhiz, F.; Qaiss, A.E.K. Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites. Mater. Des. 2013, 51, 780–788. [Google Scholar] [CrossRef]
- Yan, L. Effect of alkali treatment on vibration characteristics and mechanical properties of natural fabric reinforced composites. J. Reinf. Plast. Compos. 2012, 31, 887–896. [Google Scholar] [CrossRef]
- Kumar, K.S.; Siva, I.; Rajini, N.; Jeyaraj, P.; Jappes, J.W. Tensile, impact, and vibration properties of coconut sheath/sisal hybrid composites: Effect of stacking sequence. J. Reinf. Plast. Compos. 2014, 33, 1802–1812. [Google Scholar] [CrossRef]
- Indira, K.N.; Jyotishkumar, P.; Thomas, S. Viscoelastic behaviour of untreated and chemically treated banana Fiber/PF composites. Fibers Polym. 2014, 15, 91–100. [Google Scholar] [CrossRef]
- Rajini, N.; Jappes, J.T.W.; Jeyaraj, P.; Rajakarunakaran, S.; Bennet, C. Effect of montmorillonite nanoclay on temperature dependence mechanical properties of naturally woven coconut sheath/polyester composite. J. Reinf. Plast. Compos. 2013, 32, 811–822. [Google Scholar] [CrossRef]
- Prabu, V.A.; Uthayakumar, M.; Manikandan, V.; Rajini, N.; Jeyaraj, P. Influence of redmud on the mechanical, damping and chemical resistance properties of banana/polyester hybrid composites. Mater. Des. 2014, 64, 270–279. [Google Scholar] [CrossRef]
- Negawo, T.A.; Polat, Y.; Buyuknalcaci, F.N.; Kilic, A.; Saba, N.; Jawaid, M. Mechanical, morphological, structural and dynamic me-chanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites. Compos. Struct. 2019, 207, 589–597. [Google Scholar] [CrossRef]
- Gheith, M.H.; Aziz, M.A.; Ghori, W.; Saba, N.; Asim, M.; Jawaid, M.; Alothman, O.Y. Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites. J. Mater. Res. Technol. 2019, 8, 853–860. [Google Scholar] [CrossRef]
- Satapathy, S.; Kothapalli, R.V.S. Mechanical, Dynamic Mechanical and Thermal Properties of Banana Fiber/Recycled High Density Polyethylene Biocomposites Filled with Flyash Cenospheres. J. Polym. Environ. 2018, 26, 200–213. [Google Scholar] [CrossRef]
- Doddi, P.R.V.; Chanamala, R.; Dora, S.P. Effect of fiber orientation on dynamic mechanical properties of PALF hybridized with basalt reinforced epoxy composites. Mater. Res. Express 2020, 7, 015329. [Google Scholar] [CrossRef]
- Kalusuraman, G.; Siva, I.; Munde, Y.; Pon Selvan, C.; Kumar, S.A.; Amico, S.C. Dynamic-mechanical properties as a function of luffa fibre content and adhesion in a polyester composite. Polym. Test. 2020, 87, 106538. [Google Scholar] [CrossRef]
- Fangueiro, R.; Rana, S. Natural Fibres: Advances in Science and Technology towards Industrial Applications; Fangueiro, R., Rana, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Gupta, K.M. Engineering Materials: Research, Applications and Advances; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Jawaid, M.; Khalil, H.A.; Alattas, O.S. Woven hybrid biocomposites: Dynamic mechanical and thermal properties. Compos. Part A Appl. Sci. Manuf. 2012, 43, 288–293. [Google Scholar] [CrossRef]
- Asim, M.; Jawaid, M.; Abdan, K.; Ishak, M.R. Effect of pineapple leaf fibre and kenaf fibre treatment on mechanical performance of phenolic hybrid composites. Fibers Polym. 2017, 18, 940–947. [Google Scholar] [CrossRef]
- Durante, M.; Langella, A.; Formisano, A.; Boccarusso, L.; Carrino, L. Dynamic-Mechanical Behaviour of Bio-composites. Procedia Eng. 2016, 167, 231–236. [Google Scholar] [CrossRef]
- Chandrasekar, M.; Ishak, M.R.; Sapuan, S.M.; Leman, Z.; Jawaid, M. A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast. Rubber Compos. 2017, 46, 119–136. [Google Scholar] [CrossRef]
- Chandradass, J.; Kumar, M.R.; Velmurugan, R. Effect of nanoclay addition on vibration properties of glass fibre reinforced vinyl ester composites. Mater. Lett. 2007, 61, 4385–4388. [Google Scholar] [CrossRef]
- Gibson, R.F. A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 2010, 92, 2793–2810. [Google Scholar] [CrossRef]
- Wambua, P.; Ivens, J.; Verpoest, I. Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar] [CrossRef]
- Kalia, S.; Kaith, B.; Kaur, I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review. Polym. Eng. Sci. 2009, 49, 1253–1272. [Google Scholar] [CrossRef]
- Haddad, Y.M. Mechanical Behaviour of Engineering Materials: Volume 2: Dynamic Loading and Intelligent Material Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Chen, B.; Chou, T.-W. Free vibration analysis of orthogonal-woven fabric composites. Compos. Part A Appl. Sci. Manuf. 1999, 30, 285–297. [Google Scholar] [CrossRef]
- Rouf, K.; Denton, N.L.; French, R.M. Effect of fabric weaves on the dynamic response of two-dimensional woven fabric composites. J. Mater. Sci. 2017, 52, 10581–10591. [Google Scholar] [CrossRef]
- Duc, F.; Bourban, E.; Manson, E. Damping performance of flax fibre composites. In Proceedings of the 16th European Conference on Composite Materials, Seville, Spain, 22–26 June 2014. [Google Scholar]
- Shen, Y.; Tan, J.; Fernandes, L.; Qu, Z.; Li, Y. Dynamic Mechanical Analysis on Delaminated Flax Fiber Reinforced Composites. Material 2019, 12, 2559. [Google Scholar] [CrossRef] [Green Version]
- Mishra, I.; Sahu, S.K. Modal Analysis of Woven Fiber Composite Plates with Different Boundary Conditions. Int. J. Struct. Stab. Dyn. 2015, 15, 1–17. [Google Scholar] [CrossRef]
- Chandra, R.; Singh, S.P.; Gupta, K. Damping studies in fiber-reinforced composites–A review. Compos. Struct. 1999, 46, 41–51. [Google Scholar] [CrossRef]
- Akash, D.A.; Thyagaraj, N.R.; Sudev, L.J. Experimental study of dynamic behaviour of hybrid jute/sisal fibre reinforced polyester composites. Int. J. Sci. Eng. Appl. 2013, 2, 170–172. [Google Scholar] [CrossRef]
- Rajini, N.; Jappes, J.W.; Rajakarunakaran, S.; Jeyaraj, P. Dynamic mechanical analysis and free vibration behavior in chemical modifications of coconut sheath/nano-clay reinforced hybrid polyester composite. J. Compos. Mater. 2013, 47, 3105–3121. [Google Scholar] [CrossRef]
- Rajesh, M.; Jeyaraj, P.; Rajini, N. Mechanical, Dynamic Mechanical and Vibration Behavior of Nanoclay Dispersed Natural Fiber Hybrid Intra-ply Woven Fabric Composite. In Nanoclay Reinforced Polymer Composites; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; pp. 281–296. [Google Scholar]
- Rajesh, M.; Pitchaimani, J. Dynamic mechanical and free vibration behavior of natural fiber braided fabric composite: Com-parison with conventional and knitted fabric composites. Polym. Compos. 2018, 39, 2479–2489. [Google Scholar] [CrossRef]
- Rajesh, M.; Pitchaimani, J.; Rajini, N. Free Vibration Characteristics of Banana/Sisal Natural Fibers Reinforced Hybrid Polymer Composite Beam. Procedia Eng. 2016, 144, 1055–1059. [Google Scholar] [CrossRef] [Green Version]
- Rajesh, M.; Pitchaimani, J. Experimental investigation on buckling and free vibration behavior of woven natural fiber fabric composite under axial compression. Compos. Struct. 2017, 163, 302–311. [Google Scholar] [CrossRef]
- Mansor, M.; Sapuan, S.; Zainudin, E.; Nuraini, A.; Hambali, A. Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design. Mater. Des. 2013, 51, 484–492. [Google Scholar] [CrossRef]
- Otto, G.P.; Moisés, M.P.; Carvalho, G.; Rinaldi, A.W.; Garcia, J.C.; Radovanovic, E.; Fávaro, S.L. Mechanical properties of a polyurethane hybrid composite with natural lignocellulosic fibers. Compos. Part B Eng. 2017, 110, 459–465. [Google Scholar] [CrossRef]
- Prasanna Venkatesh, R.; Ramanathan, K.; Srinivasa Raman, V. Tensile, flexual, impact and water absorption properties of natural fibre reinforced polyester hybrid composites. Fibres Text. East. Eur. 2016, 117, 90–94. [Google Scholar] [CrossRef]
- Chaudhary, V.; Bajpai, P.K.; Maheshwari, S. Studies on Mechanical and Morphological Characterization of Developed Jute/Hemp/Flax Reinforced Hybrid Composites for Structural Applications. J. Nat. Fibers 2018, 15, 80–97. [Google Scholar] [CrossRef]
- Mohanavel, V.; Raja, T.; Yadav, A.; Ravichandran, M.; Winczek, J. Evaluation of Mechanical and Thermal Properties of Jute and Ramie Reinforced Epoxy-based Hybrid Composites. J. Nat. Fibers 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Abedom, F.; Sakthivel, S.; Asfaw, D.; Melese, B.; Solomon, E.; Kumar, S.S. Development of Natural Fiber Hybrid Composites Using Sugarcane Bagasse and Bamboo Charcoal for Automotive Thermal Insulation Materials. Adv. Mater. Sci. Eng. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Atmakuri, A.; Palevicius, A.; Kolli, L.; Vilkauskas, A.; Janusas, G. Development and Analysis of Mechanical Properties of Caryota and Sisal Natural Fibers Reinforced Epoxy Hybrid Composites. Polymers 2021, 13, 864. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.L.; Banea, M.D.; Neto, J.S.; Cavalcanti, D.K. Mechanical and Thermal Characterization of Natural Intralaminar Hybrid Composites Based on Sisal. Polymers 2020, 12, 866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senthilkumar, K.; Siva, I.; Rajini, N.; Jappes, J.W.; Siengchin, S. Mechanical characteristics of tri-layer eco-friendly polymer composites for interior parts of aerospace application. In Sustainable Composites for Aerospace Applications; Woodhead Publishing: Sawston, UK, 2018; pp. 35–53. [Google Scholar] [CrossRef]
- Ramasamy, M.; Ajith Arul, D.; Nithya, S.M.; Kumar, S.; Pugazhenthi, R. Characterization of natural–Synthetic fiber reinforced epoxy based composite–Hybridization of kenaf fiber and kevlar fiber. Mater. Today Proc. 2021, 37, 1699–1705. [Google Scholar] [CrossRef]
- Živković, I.; Fragassa, C.; Pavlović, A.; Brugo, T. Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Compos. B Eng. 2017, 111, 148–164. [Google Scholar] [CrossRef]
- Arumugam, S.; Kandasamy, J.; Sultan, M.T.H.; Shah, A.U.M.; Safri, S.N.A. Investigations on fatigue analysis and biomimetic mineralization of glass fiber/sisal fiber/chitosan reinforced hybrid polymer sandwich composites. J. Mater. Res. Technol. 2021, 10, 512–525. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillò, J.; D’Altilia, S.; Valente, T.; Santulli, C.; Touchard, F.; Chocinski-Arnault, L.; Mellier, D.; Lampani, L.; Gaudenzi, P. Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact. Compos. Part B Eng. 2016, 91, 144–153. [Google Scholar] [CrossRef]
- Sapuan, S.M.; Aulia, H.S.; Ilyas, R.A.; Atiqah, A.; Dele-Afolabi, T.T.; Nurazzi, M.N.; Supian, A.B.M.; Atikah, M.S.N. Mechanical Properties of Longitudinal Basalt/Woven-Glass-Fiber-reinforced Unsaturated Polyester-Resin Hybrid Composites. Polymers 2020, 12, 2211. [Google Scholar] [CrossRef]
- Zuhudi, N.Z.; Lin, R.J.; Jayaraman, K. Flammability, thermal and dynamic mechanical properties of bamboo–glass hybrid com-posites. J. Compos. Mater. 2016, 29, 1210–1228. [Google Scholar] [CrossRef]
- Baihaqi, N.N.M.Z.; Khalina, A.; Mohd Nurazzi, N.; Aisyah, H.A.; Sapuan, S.M.; Ilyas, R.M. Effect of fiber content and their hybridization on bending and torsional strength of hybrid epoxy composites reinforced with carbon and sugar palm fibers. Polimery 2021, 66, 36–43. [Google Scholar] [CrossRef]
- Jothibasu, S.; Mohanamurugan, S.; Vijay, R.; Lenin Singaravelu, D.L.; Vinod, A.; Sanjay, M.R. Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications. J. Ind. Text. 2020, 49, 1036–1060. [Google Scholar] [CrossRef]
- Bandaru, A.K.; Patel, S.; Sachan, Y.; Alagirusamy, R.; Bhatnagar, N.; Ahmad, S. Low velocity impact response of 3D angle-interlock Kevlar/basalt reinforced polypropylene composites. Mater. Des. 2016, 105, 323–332. [Google Scholar] [CrossRef]
- Salman, S.D.; Sharba, M.J.; Leman, Z.; Sultan, M.T.H.; Ishak, M.R.; Cardona, F. Tension-Compression Fatigue Behavior of Plain Woven Kenaf/Kevlar Hybrid Composites. Bioresources 2016, 11, 3575–3586. [Google Scholar] [CrossRef]
- Islam, M.; Sharif, A.; Hussain, M.; Hassan, I. Synergic effect of recycled cotton fabric and wood saw dust reinforced biodegradable polypropylene composites. Bangladesh J. Sci. Ind. Res. 2019, 54, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Reddy, P.V.; Prasad, P.R.; Krishnudu, D.M.; Hussain, P. Influence of fillers on mechanical properties of prosopis juliflora fiber rein-forced hybrid composites. Mater. Today Proc. 2019, 19, 384–387. [Google Scholar] [CrossRef]
- Saba, N.; Alothman, O.Y.; Almutairi, Z.; Jawaid, M. Magnesium hydroxide reinforced kenaf fibers/epoxy hybrid composites: Mechanical and thermomechanical properties. Constr. Build. Mater. 2019, 201, 138–148. [Google Scholar] [CrossRef]
- Rao, T.V.; Chowdary, M.S.; Babu, C.S.S.; Sumanth, C.M. Effect of Bamboo Fiber on Mechanical Properties of Fly Ash with Polypropylene Composites. In Lecture Notes in Mechanical Engineering; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2018; pp. 437–446. [Google Scholar]
- Abdellaoui, H.; Raji, M.; Essabir, H.; Bouhfid, R.; Qaiss, A.E.K. Mechanical behavior of carbon/natural fiber-based hybrid composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 103–122. [Google Scholar]
- Kauser, B.; Upadhyay, V.; Chak, V.; Hasan, F. Moisture Absorption Behavior and Mechanical Properties of Banana Fiber-Reinforced Fly Ash/Epoxy Composites. In Innovation in Materials Science and Engineering; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; pp. 11–16. [Google Scholar]
- Singh, T.; Gangil, B.; Ranakoti, L.; Joshi, A. Effect of silica nanoparticles on physical, mechanical, and wear properties of natural fiber reinforced polymer composites. Polym. Compos. 2021, 42, 2396–2407. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, Y.; Gangil, B.; Patel, V.K. Effects of Agro-Waste and Bio-Particulate Fillers on Mechanical and Wear Properties of Sisal Fibre Based Polymer Composites. Mater. Today Proc. 2017, 4, 10144–10147. [Google Scholar] [CrossRef]
- Udaya Kumar, P.A.; Suresha, B.; Rajini, N.; Satyanarayana, K.G. Effect of treated coir fiber/coconut shell powder and aramid fiber on mechanical properties of vinyl ester. Polym. Compos. 2018, 39, 4542–4550. [Google Scholar] [CrossRef]
- Inbakumar, J.P.; Ramesh, S. Mechanical, wear and thermal behaviour of hemp fibre/egg shell particle reinforced epoxy resin bio composite. Trans. Can. Soc. Mech. Eng. 2018, 42, 280–285. [Google Scholar] [CrossRef]
- Bisaria, H.; Gupta, M.K.; Shandilya, P.A.; Srivastava, R. Effect of Fibre Length on Mechanical Properties of Randomly Oriented Short Jute Fibre Reinforced Epoxy Composite. Mater. Today Proc. 2015, 2, 1193–1199. [Google Scholar] [CrossRef]
- Gupta, M.; Srivastava, R. Effect of Sisal Fibre Loading on Dynamic Mechanical Analysis and Water Absorption Behaviour of Jute Fibre Epoxy Composite. Mater. Today Proc. 2015, 2, 2909–2917. [Google Scholar] [CrossRef]
- Panthapulakkal, S.; Sain, M. Studies on the water absorption properties of short hemp—Glass fiber hybrid polypropylene com-posites. J. Compos. Mater. 2007, 41, 1871–1883. [Google Scholar] [CrossRef]
- Xia, C.; Shi, S.Q.; Cai, L.; Hua, J. Property enhancement of kenaf fiber composites by means of vacuum-assisted resin transfer molding (VARTM). Holzforschung 2015, 69, 307–312. [Google Scholar] [CrossRef]
- Kureemun, U.; Ravandi, M.; Tran, L.Q.; Teo, W.S.; Tay, T.E.; Lee, H.P. Effects of hybridization and hybrid fibre dispersion on the me-chanical properties of woven flax-carbon epoxy at low carbon fibre volume fractions. Compos. Part B Eng. 2018, 134, 28–38. [Google Scholar] [CrossRef]
- Ramana, M.V.; Ramprasad, S. Experimental Investigation on Jute/Carbon Fibre reinforced Epoxy based Hybrid Composites. Mater. Today Proc. 2017, 4, 8654–8664. [Google Scholar] [CrossRef]
- Romanzini, D.; Ornaghi, H.L., Jr.; Amico, S.C.; Zattera, A.J. Influence of fiber hybridization on the dynamic mechanical properties of glass/ramie fiber-reinforced polyester composites. J. Reinf. Plast. Compos. 2012, 31, 1652–1661. [Google Scholar] [CrossRef]
- Romanzini, D.; Lavoratti, A.; Ornaghi, H.L., Jr.; Amico, S.C.; Zattera, A.J. Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites. Mater. Des. 2013, 47, 9–15. [Google Scholar] [CrossRef]
- Thwe, M.M.; Liao, K. Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Compos. Part A Appl. Sci. Manuf. 2002, 33, 43–52. [Google Scholar] [CrossRef]
- Sreekala, M.S.; George, J.; Kumaran, M.G.; Thomas, S. The mechanical performance of hybrid phenol-formaldehyde-based compo-sites reinforced with glass and oil palm fibres. Compos. Sci. Technol. 2002, 62, 339–353. [Google Scholar] [CrossRef]
- Thwe, M.M.; Liao, K. Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos. Sci. Technol. 2003, 63, 375–387. [Google Scholar] [CrossRef]
- Ahmed, K.S.; Vijayarangan, S. Withdrawn: Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites. J. Mater. Process. Technol. 2007, 207, 330–335. [Google Scholar] [CrossRef]
- Ramesh, M.; Palanikumar, K.; Reddy, K.H. Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester compo-sites. Compos. Part B Eng. 2013, 48, 1–9. [Google Scholar] [CrossRef]
- Kumar, S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. Epoxidized Soybean Oil-Based Epoxy Blend Cured with Anhydride-Based Cross-Linker: Thermal and Mechanical Characterization. Ind. Eng. Chem. Res. 2017, 56, 687–698. [Google Scholar] [CrossRef]
- Anuar, H.; Ahmad, S.H.; Rasid, R.; Ahmad, A.; Busu, W.W. Mechanical properties and dynamic mechanical analysis of thermo-plastic-natural-rubber-reinforced short carbon fiber and kenaf fiber hybrid composites. J. Appl. Polym. Sci. 2008, 107, 4043–4052. [Google Scholar] [CrossRef]
- Nayak, S.K.; Mohanty, S.; Samal, S.K. Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Mater. Sci. Eng. A 2009, 523, 32–38. [Google Scholar] [CrossRef]
- Devi, L.U.; Bhagawan, S.; Thomas, S. Dynamic mechanical analysis of pineapple leaf/glass hybrid fiber reinforced polyester composites. Polym. Compos. 2009, 31, 956–965. [Google Scholar] [CrossRef]
- Ornaghi, H.L., Jr.; Bolner, A.S.; Fiorio, R.; Zattera, A.J.; Amico, S.C. Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J. Appl. Polym. Sci. 2010, 118, 887–896. [Google Scholar] [CrossRef]
- Nayak, S.K.; Mohanty, S. Sisal Glass Fiber Reinforced PP Hybrid Composites: Effect of MAPP on the Dynamic Mechanical and Thermal Properties. J. Reinf. Plast. Compos. 2009, 29, 1551–1568. [Google Scholar] [CrossRef]
- Kositchaiyong, A.; Rosarpitak, V.; Prapagdee, B.; Sombatsompop, N. Molecular characterizations, mechanical properties and anti-algal activities for PVC and wood/PVC composites containing urea- and triazine-based algaecides. Compos. Part B Eng. 2013, 53, 25–35. [Google Scholar] [CrossRef]
- John, K.; Naidu, S.V. Sisal Fiber/Glass Fiber Hybrid Composites: The Impact and Compressive Properties. J. Reinf. Plast. Compos. 2004, 23, 1253–1258. [Google Scholar] [CrossRef]
- Pothan, L.A.; Potschke, P.; Habler, R.; Thomas, S. The Static and Dynamic Mechanical Properties of Banana and Glass Fiber Woven Fabric-Reinforced Polyester Composite. J. Compos. Mater. 2005, 39, 1007–1025. [Google Scholar] [CrossRef]
- Kuciel, S.; Bazan, P.; Liber-Kneć, A.; Gądek-Moszczak, A. Physico-Mechanical Properties of the Poly(oxymethylene) Composites Reinforced with Glass Fibers under Dynamical Loading. Polymers 2019, 11, 2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selver, E.; Ucar, N.; Gulmez, T. Effect of stacking sequence on tensile, flexural and thermomechanical properties of hybrid flax/glass and jute/glass thermoset composites. J. Ind. Text. 2018, 48, 494–520. [Google Scholar] [CrossRef]
- Valente, M.; Sarasini, F.; Marra, F.; Tirillò, J.; Pulci, G. Hybrid recycled glass fiber/wood flour thermoplastic composites: Manufacturing and mechanical characterization. Compos. Part A Appl. Sci. Manuf. 2011, 42, 649–657. [Google Scholar] [CrossRef]
- Amuthakkannan, P.; Manikandan, V.; Jappes, J.T.W.; Uthayakumar, M. Influence of stacking sequence on mechanical properties of basalt-jute fiber-reinforced polymer hybrid composites. J. Polym. Eng. 2012, 32, 547–554. [Google Scholar] [CrossRef]
- Ramesh, M.; Palanikumar, K.; Reddy, K.H. Comparative evaluation on properties of hybrid glass fiber-sisal/jute reinforced epoxy composites. Procedia Eng. 2013, 51, 745–750. [Google Scholar] [CrossRef] [Green Version]
- Bennet, C.; Rajini, N.; Jappes, J.W.; Siva, I.; Sreenivasan, V.; Amico, S. Effect of the stacking sequence on vibrational behavior of Sansevieria cylindrica/coconut sheath polyester hybrid composites. J. Reinf. Plast. Compos. 2015, 34, 293–306. [Google Scholar] [CrossRef]
- Kumar, K.S.; Siva, I.; Rajini, N.; Jappes, J.W.; Amico, S.C. Layering pattern effects on vibrational behavior of coconut sheath/banana fiber hybrid composites. Mater. Des. 2016, 15, 795–803. [Google Scholar] [CrossRef]
- Sezgin, H.; Berkalp, O.B.; Mishra, R.; Militky, J. Investigation of dynamic mechanical properties of jute/carbon reinforced composites. Composites 2016, 14, 19. [Google Scholar]
- Mochane, M.J.; Mokhena, T.C.; Mokhothu, T.H.; Mtibe, A.; Sadiku, E.R.; Ray, S.S.; Ibrahim, I.D.; Daramola, O.O. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polym. Lett. 2019, 13, 159–198. [Google Scholar] [CrossRef]
- Vaghasia, B.; Rachchh, N. Evaluation of Physical and Mechanical Properties of Woven Bamboo Glass Polyester Hybrid Composite Material. Mater. Today Proc. 2018, 5, 7930–7936. [Google Scholar] [CrossRef]
- Manteghi, S.; Mahboob, Z.; Fawaz, Z.; Bougherara, H. Investigation of the mechanical properties and failure modes of hybrid natural fiber composites for potential bone fracture fixation plates. J. Mech. Behav. Biomed. Mater. 2017, 65, 306–316. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Arpitha, G.R.; Senthamaraikannan, P.; Kathiresan, M.; Balaji, S.; Yogesha, B. The Hybrid Effect of Jute/Kenaf/E-Glass Woven Fabric Epoxy Composites for Medium Load Applications: Impact, Inter-Laminar Strength, and Failure Surface Characterization. J. Nat. Fibers 2018, 16, 600–612. [Google Scholar] [CrossRef]
- Edhirej, A.; Sapuan, S.; Jawaid, M.; Zahari, N.I. Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties. Int. J. Biol. Macromol. 2017, 101, 75–83. [Google Scholar] [CrossRef]
- Das, S. Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites. Carbohydr. Polym. 2017, 172, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Fragassa, C.; Pavlovic, A.; Santulli, C. Mechanical and impact characterisation of flax and basalt fibre vinylester composites and their hybrids. Compos. Part B Eng. 2018, 137, 247–259. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Sarasini, F.; Santulli, C.; Tirillò, J.; Zhang, Z.; Arumugam, V. Effect of basalt fibre hybridisation on post-impact me-chanical behaviour of hemp fibre reinforced composites. Compos. Part A Appl. Sci. Manuf. 2015, 75, 54–67. [Google Scholar] [CrossRef]
- Kona, S. Experimental study of the mechanical properties of banana fiber and groundnut shell ash reinforced epoxy hybrid composite. Int. J. Eng. 2018, 31, 659–665. [Google Scholar]
- Sarasini, F.; Tirillò, J.; Puglia, D.; Dominici, F.; Santulli, C.; Boimau, K.; Valente, T.; Torre, L. Biodegradable polycaprolactone-based composites reinforced with ramie and borassus fibres. Compos. Struct. 2017, 167, 20–29. [Google Scholar] [CrossRef]
- Jumaidin, R.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites. Int. J. Biol. Macromol. 2017, 97, 606–615. [Google Scholar] [CrossRef] [PubMed]
- King, F.L.; Kumar, A.J.; Srinivasan, V. Investigation of Mechanical Behaviour on Bagasse/Basalt Reinforced Poly Lactic Acid Hybrid Composites: Tensile, Flexural, Impact and Water Absorption. J. Adv. Microsc. Res. 2018, 13, 85–91. [Google Scholar] [CrossRef]
- Gupta, M.K.; Srivastava, R.K. Mechanical, thermal and water absorption properties of hybrid sisal/jute fiber reinforced polymer composite. Indian J. Eng. Mater. Sci. 2016, 23, 231–238. [Google Scholar]
- Almansour, F.; Dhakal, H.; Zhang, Z. Effect of water absorption on Mode I interlaminar fracture toughness of flax/basalt reinforced vinyl ester hybrid composites. Compos. Struct. 2017, 168, 813–825. [Google Scholar] [CrossRef] [Green Version]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Effects of chemical treatments on hemp fibre structure. Appl. Surf. Sci. 2013, 276, 13–23. [Google Scholar] [CrossRef]
- Reddy, K.O.; Maheswari, C.U.; Shukla, M.; Rajulu, A. Chemical composition and structural characterization of Napier grass fibers. Mater. Lett. 2012, 67, 35–38. [Google Scholar] [CrossRef]
- Cao, Y.; Shibata, S.; Fukumoto, I. Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos. Part A Appl. Sci. Manuf. 2006, 37, 423–429. [Google Scholar] [CrossRef]
- Gassan, J.; Bledzki, A.K. Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos. Sci. Technol. 1999, 59, 1303–1309. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Zaman, H.U.; Khan, M.A.; Khan, R.A.; Rahman, M.A.; Das, L.R.; Mamun, A. Role of potassium permanganate and urea on the improvement of the mechanical properties of jute polypropylene composites. Fibers Polym. 2010, 11, 455–463. [Google Scholar] [CrossRef]
- Brígida, A.; Calado, V.; Gonçalves, L.; Coelho, M. Effect of chemical treatments on properties of green coconut fiber. Carbohydr. Polym. 2010, 79, 832–838. [Google Scholar] [CrossRef]
- Ray, D.; Sarkar, B.K.; Das, S.; Rana, A. Dynamic mechanical and thermal analysis of vinylester-resin-matrix composites reinforced with untreated and alkali-treated jute fibres. Compos. Sci. Technol. 2002, 62, 911–917. [Google Scholar] [CrossRef]
- Costa, U.O.; Nascimento, L.F.C.; Garcia, J.M.; Monteiro, S.N.; Da Luz, F.S.; Pinheiro, W.A.; Filho, F.C.G. Effect of Graphene Oxide Coating on Natural Fiber Composite for Multilayered Ballistic Armor. Polymers 2019, 11, 1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kan, C.-W. Plasma treatments for sustainable textile processing. In Sustainable Apparel; Elsevier BV: Amsterdam, The Netherlands, 2015; pp. 49–118. [Google Scholar]
- Vellguth, N.; Rudeck, T.; Shamsuyeva, M.; Renz, F.; Endres, H.J. Thermal Stability of Natural Fibers via Thermoset Coating for Application in Engineering Thermoplastics. Key Eng. Mater. 2019, 809, 433–438. [Google Scholar] [CrossRef]
- Esen, M.; Ilhan, I.; Karaaslan, M.; Esen, R. Investigation of electromagnetic and ultraviolet properties of nano-metal-coated textile surfaces. Appl. Nanosci. 2020, 10, 551–561. [Google Scholar] [CrossRef]
- Sinha, E.; Panigrahi, S. Effect of Plasma Treatment on Structure, Wettability of Jute Fiber and Flexural Strength of its Composite. J. Compos. Mater. 2009, 43, 1791–1802. [Google Scholar] [CrossRef]
- Pappu, A.; Thakur, V.K. Towards sustainable micro and nano composites from fly ash and natural fibers for multifunctional applications. Vacuum 2017, 146, 375–385. [Google Scholar] [CrossRef] [Green Version]
- Saba, N.; Tahir, P.M.; Jawaid, M. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites. Polymers 2014, 6, 2247–2273. [Google Scholar] [CrossRef]
- Arrakhiz, F.; Benmoussa, K.; Bouhfid, R.; Qaiss, A. Pine cone fiber/clay hybrid composite: Mechanical and thermal properties. Mater. Des. 2013, 50, 376–381. [Google Scholar] [CrossRef]
- Njuguna, J.; Pielichowski, K.; Desai, S. Nanofiller-reinforced polymer nanocomposites. Polym. Adv. Technol. 2008, 19, 947–959. [Google Scholar] [CrossRef] [Green Version]
- Saba, N.; Jawaid, M.; Alothman, O.Y.; Almutairi, Z. Evaluation of dynamic properties of nano oil palm empty fruit bunch fill-er/epoxy composites. J. Mater. Res. Technol. 2019, 8, 1470–1475. [Google Scholar] [CrossRef]
- Rajesh, G.; Rao, M.V.R.; Vijay, K.; Gopinath, S. Evaluation of Tensile Properties of Nanoclay-Filled Madar Fiber-Reinforced Polyester Hybrid Composites. In Proceedings of the 2nd International Conference on Experimental and Computational Mechanics in Engineering, Banda Aceh, Indonesia, 13–14 October 2021; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; pp. 1–8. [Google Scholar]
- Ravichandran, G.; Rathnakar, G.; Santhosh, N.; Chennakeshava, R.; Hashmi, M.A. Enhancement of mechanical properties of epoxy/halloysite nanotube (HNT) nanocomposites. SN Appl. Sci. 2019, 1, 296. [Google Scholar]
- Yahaya, R.; Sapuan, S.; Jawaid, M.; Leman, Z.; Zainudin, E. Mechanical performance of woven kenaf-Kevlar hybrid composites. J. Reinf. Plast. Compos. 2014, 33, 2242–2254. [Google Scholar] [CrossRef]
- Swolfs, Y.; Gorbatikh, L.; Verpoest, I. Fibre hybridisation in polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2014, 67, 181–200. [Google Scholar] [CrossRef]
- Maslinda, A.; Majid, M.S.A.; Ridzuan, M.; Afendi, M.; Gibson, A. Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Compos. Struct. 2017, 167, 227–237. [Google Scholar] [CrossRef]
- Park, R.; Jang, J. The effects of Hybridization on the mechanical performance of aramid/polyethylene intraply fabric composites. Compos. Sci. Technol. 1998, 58, 1621–1628. [Google Scholar] [CrossRef]
- Pegoretti, A.; Fabbri, E.; Migliaresi, C.; Pilati, F. Intraply and interply hybrid composites based on E-glass and poly(vinyl alcohol) woven fabrics: Tensile and impact properties. Polym. Int. 2004, 53, 1290–1297. [Google Scholar] [CrossRef]
- Attia, M.; El-Baky, M.A.; Alshorbagy, A. Mechanical performance of intraply and inter-intraply hybrid composites based on e-glass and polypropylene unidirectional fibers. J. Compos. Mater. 2017, 51, 381–394. [Google Scholar] [CrossRef]
- Dehkordi, M.T.; Nosraty, H.; Shokrieh, M.M.; Minak, G.; Ghelli, D. The influence of hybridization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites. Mater. Des. 2013, 43, 283–290. [Google Scholar] [CrossRef]
- Ayranci, C.; Carey, J. 2D braided composites: A review for stiffness critical applications. Compos. Struct. 2008, 85, 43–58. [Google Scholar] [CrossRef]
- Sun, H.-Y.; Qiao, X. Prediction of the mechanical properties of three-dimensionally braided composites. Compos. Sci. Technol. 1997, 57, 623–629. [Google Scholar] [CrossRef]
- Sun, X.; Sun, C. Mechanical properties of three-dimensional braided composites. Compos. Struct. 2004, 65, 485–492. [Google Scholar] [CrossRef]
- Goyal, D.; Tang, X.; Whitcomb, J.D.; Kelkar, A.D. Effect of Various Parameters on Effective Engineering Properties of 2 × 2 Braided Composites. Mech. Adv. Mater. Struct. 2005, 12, 113–128. [Google Scholar] [CrossRef]
- Ye, L.; Mai, Y.W.; Su, Z. (Eds.) Composite Technologies for 2020. In Proceedings of the Fourth Asian-Australasian Conference on Composite Materials (Accm 4), Sydney, Australia, 6–9 July 2004; Woodhead Publishing: Sawston, UK, 2004. [Google Scholar]
- Leong, K.; Ramakrishna, S.; Huang, Z.; Bibo, G. The potential of knitting for engineering composites—A review. Compos. Part A Appl. Sci. Manuf. 2000, 31, 197–220. [Google Scholar] [CrossRef]
- Muralidhar, B.; Giridev, V.; Raghunathan, K. Flexural and impact properties of flax woven, knitted and sequentially stacked knitted/woven preform reinforced epoxy composites. J. Reinf. Plast. Compos. 2012, 31, 379–388. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, M.; Fangueiro, R.; De Araujo, M. Mechanical Properties of Composite Materials Made of 3D Stitched Woven-knitted Preforms. J. Compos. Mater. 2010, 44, 1753–1767. [Google Scholar] [CrossRef] [Green Version]
- Van de Velde, K.; Kiekens, P. Influence of fibre and matrix modifications on mechanical and physical properties of flax fibre reinforced poly (propylene). Macromol. Mater. Eng. 2001, 286, 237–242. [Google Scholar] [CrossRef]
- Li, H.-X.; Liu, L.; Zhou, Y.-W.; Huang, G. Flax/PP Weft-knitted Thermoplastic Composites and its Tensile Properties. J. Reinf. Plast. Compos. 2009, 29, 1820–1825. [Google Scholar] [CrossRef]
- Rongxing, Z.; Hong, H.; Nanliang, C.; Xunwei, F. An experimental and numerical study on the impact energy absorption char-acteristics of the multiaxial warp knitted (MWK) reinforced composites. J. Compos. Mater. 2005, 39, 525–542. [Google Scholar] [CrossRef]
- Li, J.J.; Sun, B.Z.; Hu, H.; Gu, B.H. Responses of 3D biaxial spacer weft-knitted composite circular plate under impact loading. Part II: Impact tests and FEM calculation. J. Text. Inst. 2010, 101, 35–45. [Google Scholar] [CrossRef]
- Xue, D.; Hu, H. Mechanical properties of biaxial weft-knitted flax composites. Mater. Des. 2013, 46, 264–269. [Google Scholar] [CrossRef]
- Muralidhar, B.A. Tensile and compressive behaviour of multilayer flax-rib knitted preform reinforced epoxy composites. Mater. Des. 2013, 49, 400–405. [Google Scholar] [CrossRef]
- Kannan, T.G.; Wu, C.M.; Cheng, K.B. Effect of different knitted structure on the mechanical properties and damage behavior of Flax/PLA (Poly Lactic acid) double covered uncommingled yarn composites. Compos. Part B Eng. 2012, 43, 2836–2842. [Google Scholar] [CrossRef]
- De Carvalho, L.H.; Cavalcante, J.M.; d’Almeida, J.R. Comparison of the mechanical behavior of plain weave and plain weft knit jute fabric-polyester-reinforced composites. Polym. Plast. Technol. Eng. 2006, 45, 791–797. [Google Scholar] [CrossRef]
Composites | Flexural Strength (MPa) | Flexural Modulus (GPa) | Tensile Strength (MPa) | Tensile Modulus (GPa) | Elongation at Break (%) | Author and Year | Ref. |
---|---|---|---|---|---|---|---|
Jute/polypropylene | 77.32 | 4.34 | 56.71 | 1.82 | – | Chandekar et al. (2020) | [58] |
ramie (5-layer) /epoxy | 98.73 ± 5.98 | – | 99.04 ± 2.85 | – | – | Darshan and Suresha (2021) | [59] |
Kenaf/polypropylene | 45.56 | 2.37 | 24.67 | 2.35 | – | Akthar et al. (2016) | [60] |
Sisal/epoxy | 252.39 ± 12.11 | 11.32 ± 1.02 | 83.96 ± 6.94 | 1.58 ± 0.08 | – | Gupta and Srivastava (2016) | [61] |
Rice straw/LDPE | 33.7 | 1.6 | 13.7 | 0.144 | 24.10 | Xia et al. (2018) | [62] |
Pineapple/epoxy | ~100 | – | 80.12 ± 2.23 | 8.15 ± 0.23 | – | Odusote and Oyewo (2016) | [63] |
Rice straw/polypropylene | 36.5 ± 0.5 | 1.28 ± 0.027 | 33.2 ± 0.5 | 1.66 ± 0.025 | 23.9 ± 2.9 | Hidalgo-Salazar and Salinas (2019) | [64] |
Reed/citric acid | 12.51 | 2.45 | – | – | 0.54 | Ferrandez-Garcia et al. (2019) | [65] |
Basalt fiber/silk fiber/epoxy | 151.42 | 6.20 | 118.85 | 2.15 | – | Georgiopoulos et al. (2016) | [66] |
Sisal/cotton/polyester | 270 ± 4 | 12.62 ± 0.41 | 65 ± 5 | 0.52 ± 0.015 | 12.31 | Sathishkumar et al. (2017) | [67] |
Hemp/sisal/epoxy | 44.47 ± 2 | 1.892 ± 0.061 | 31.76 ± 0.88 | 1.173 ± 0.32 | 3.2 6 ± 0.41 | Thiagamani et al. (2019) | [68] |
Sisal/chitosan/epoxy | 136 ± 2.8 | 7.023 ± 0.61 | 46.70 ± 3.5 | 3.821 ± 0.13 | 2.176 ±0.82 | Soundhar et al. (2019) | [69] |
Sisal/bagasse/epoxy | 0.76 | – | 27.36 | – | 0.06 | James et al. (2020) | [70] |
Jute/hemp/flax/epoxy | 66 ± 4 | 1.25 ± 0.23 | 60 ± 3 | 1.88 ± 0.21 | 5.8 ± 2.2 | Chaudhary et al. (2018) | [71] |
Banana/ramie/polypropylene | 30 | 35 ± 2 | Sai krishnan et al. (2020) | [72] | |||
sisal/banana/coir/epoxy | 48.60 | 3.45 | 26.35 | 1.20 | – | Balaji et al. (2019) | [73] |
Date palm/flax/thermoplastic starch | 73.6 | 5 | 31 | 2.8 | 5.25 | Ibrahim et al. (2014) | [74] |
Kenaf fiber/phenolic resin | 62.12 | 2.63 | 15.8 | 4.350 | 2.89 | Naresh Kumar et al. (2021) | [75] |
Banana/jute fiber/vinylester | 70 | 3.26 | 17.98 | 1.89 | 4.5 | Ravindran et al. (2021) | [76] |
Red banana/ramie/vinyl ester | 80 | – | 42 | – | – | Sai krishnan et al. (2020) | [77] |
Flax/jute/polypropylene | 58.79 ± 1.73 | 1.39 ± 0.11 | 39.48 ± 1.61 | 2.85 ± 0.12 | 2.90 ± 0.18 | Karaduman et al. (2015) | [78] |
Coconut sheath/epoxy | 76.80 | – | 58.60 | – | – | Suresh Kumar et al. (2014) | [79] |
Areca sheath/palm leaf sheath fiber/epoxy | 51 | – | 46 | – | 0.18 | Ganesh et al. (2020) | [80] |
Kenaf/jute fiber | 57.2 | 4.62 | 43.21 | 3.60 | 2.1 | Khan et al. (2019) | [81] |
Banana/kenaf/epoxy | 24 | 2.32 | 54 | 0.291 | 18.5 | Sathish et al. (2017) | [82] |
No. | Composites | Observations | Authors and Year | Ref. |
---|---|---|---|---|
1. | Kenaf and hemp bast fiber-reinforced polyester | The composites had a relatively higher storage modulus than other samples. | Aziz and Ansell (2004) | [84] |
2. | Natural fiber-reinforced polyethylene | The developed composite had relatively better shear properties than other samples. | Franco and Valadez (2005) | [85] |
3. | Coir fiber-reinforced natural rubber | Interfacial bonding influence energy dissipation was observed. | Geethamma et al. (2005) | [86] |
4. | Jute fiber-reinforced green composites | The developed composites had relatively better tensile property and toughness. | Hossain et al. (2011) | [87] |
5. | Doum fiber-reinforced polypropylene composites | The usage of a coupling agent in the composites improved the rheological properties. | Essabir et al. (2013) | [88] |
6. | Flax- and linen-fabric-reinforced epoxy | Improved fiber/matrix adhesion reduced the damping ratio of the composite. | Yan (2012) | [89] |
7. | Coconut sheath fiber epoxy | The enhanced interface bonding reduced the damping ratio of the fiber. | Kumar et al. (2014) | [90] |
8. | Banana fiber-reinforced phenol formaldehyde resole | The developed composite had a better glass transition temperature and storage modulus. | Indira et al. (2014) | [91] |
9. | Woven coconut sheath/polyester composite | The developed composites demonstrated better damping characteristics than the counterpart materials. | Rajini et al. (2013a) | [92] |
10. | Banana/polyester hybrid composites | Reducing the red-mud particle composition increased the damping properties of the composites. | Uthayakumar et al. (2014) | [93] |
11. | Ensete stem fibers/polyester composites | The storage modulus of the constructed composites made from ensete fibers treated with 5.0% NaOH was 1412 MPa, i.e., it was 108% more than that of untreated ensete-fiber polyester composites. | Negawo et al. (2019) | [94] |
12. | Date palm fibers/epoxy composites | The storage modulus and loss modulus were improved by including date palm fibers (DPF) in epoxy. However, 50% DPF loading showed greater performance than 40% or 60% DPF loading. | Gheith et al. (2019) | [95] |
13. | Banana fiber (BF)/recycled high-density polyethylene composites (RHDPEs) | The modulus of the RHDPE matrix was significantly increased when BF was added. An increase in the storage modulus value of about 20.42% was found while adding BF to RHDPE. | Sukanya and Kothapalli (2018) | [96] |
14. | Pineapple leaf fiber (PALF) hybridized with basalt-reinforced epoxy composite | Changes in fiber orientations were discovered to have a significant impact on the loss tangent and storage modulus. | Doddi et al. (2020) | [97] |
15. | Luffa cylindrical/ polyester composite | The effects of fiber surface treatment (with NaOH, silane, and Ca(OH)2) and fiber content on the generated vegetable fiber (luffa cylindrica) polyester composite were investigated (30%, 40%, and 50%). The Ca(OH)2-treated fiber had a high peak in the damping factor (at 50%), whereas silane-treated fiber had a higher loss modulus (at 50%). | Kalusuraman et al. (2020) | [98] |
Hybrid | Matrix | Observations | References | |
---|---|---|---|---|
Natural Fiber and Natural Fiber | Rice husk/sisal | Polyurethane | A total of 82/18 (% w/w) rice husk/sugarcane bagasse combinations showed higher mechanical properties. | Otto et al. (2017) [123] |
Bamboo fiber/sisal | Polyester | Tensile strength increased by 30%, flexural strength increased by 27.4%, and impact strength increased by 36.9%. | Prasanna et al. (2016) [124] | |
Jute/hemp/flax fiber | Epoxy | The developed hybrid composite exhibited a higher modulus, tensile strength, and impact strength. | Chaudhary et al. (2018b) [125] | |
Jute/ramie | Epoxy | Mechanical testing revealed that increasing the quantity of bidirectional woven ramie fiber enhanced the flexural and tensile strength of the hybrid composites, whereas increasing the content of chopped jute fiber lowered the flexural and tensile strength. | Mohanvel et al. (2021) [126] | |
Sugarcane bagasse/bamboo | Polyurethane foam | In comparison to other combinations, the bagasse fiber/bamboo charcoal 30/70-based composites had a greater flexural strength, impact strength, and thermal insulation coefficient. | Abedom et al. (2021) [127] | |
Caryota/sisal | Epoxy | Over single-fiber composites, hybrid composites exhibited improved mechanical characteristics. | Atmakuri et al. (2021) [128] | |
Ramie/sisal/curaua | Epoxy | Hybridization of sisal-based composites improved mechanical characteristics. The thermal investigation revealed that the hybridization had no effect on the composite’s thermal stability. | Pereira et al. (2020) [129] | |
Banana/coconut sheath fiber | Polyester | The mechanical properties were varied with the layering sequence of banana and coconut sheath fiber. Irrespective of the relative wt% of the fibers and layering sequence used, alkali treatment exhibited a positive effect on the assessed properties. | Senthil Kumar et al. (2016) [130] | |
Natural Fiber and synthetic fiber | Kenaf fiber/Kevlar fiber | Epoxy | The hybridization of kenaf with Kevlar fiber improved the mechanical characteristics of epoxy composites. | Ramasamy et al. (2021) [131] |
Flax fiber/basalt | Green vinyl ester | The hybrid composite was prepared by using flax fiber reinforcement (FFR) in the central zone and basalt fiber reinforcement (BFR) in the external layers for applications of boats and yachts. The results showed significant impact behavior improvements for hybrid composites compared to single composites. | Zivkovic et al. (2017) [132] | |
Sisal fiber/glass | Epoxy | Higher mechanical properties were observed while placing glass fiber as an external layer and sisal fiber as an inner layer. | Soundhar et al. (2020) [133] | |
Flax fiber/carbon | Epoxy | Hybrid composites were prepared by using flax and carbon fiber with different stacking sequences. Results revealed that the presence of carbon fiber laminates as outer layers and flax as inner layers showed higher mechanical properties in contrast to other combinations. | Sarasini et al. (2016) [134] | |
Basalt/glass fiber | Unsaturated polyester | In comparison to clean glass fiber composites, adding basalt to a glass fiber-reinforced unsaturated polyester resin enhanced the tensile, density, and flexural characteristics of the composites. | Sapuan et al. (2020) [135] | |
Bamboo/glass fiber | Polypropylene | The hybrid composites (bamboo–glass fiber) performed minimum heat reduction, and were thermally steadier before starting to degrade at 275 °C and fully degraded at 400 °C compared to glass-polypropylene composites. | Zuhudi et al. (2016) [136] | |
Sugar palm fiber/carbon | Epoxy | The ratio of 60/40 hybrid sugar palm yarn/carbon fiber-reinforced composites delivered the best flexural and torsion performances. | Baihaqi et al. (2021) [137] | |
Areca sheath/jute/glass | Epoxy | The hybrid composites using jute fiber as middle layers, areca sheath fiber as an inner layer, and glass textiles as an exterior layer showed a significant increase in mechanical properties. | Jothibasu et al. (2018) [138] | |
Basalt fiber/Kevlar | Polypropylene | Results indicate that there was a considerable enhancement in the energy-absorbing capability of hybrid composites (Kevlar/basalt/polypropylene) compared to Kevlar/polypropylene and basalt/polypropylene composites. | Bandaru et al. (2016) [139] | |
Kenaf fiber/Kevlar | Epoxy | Due to the sandwich structural effect, the hybrid composites had better mechanical characteristics in tension than compression. | Salman et al. (2016) [140] | |
Natural Fiber and filler | Waste cotton/wood sawdust | Polypropylene | The hybrid composites showed higher tensile strength and flexural strength up to 15 wt% of addition of wood sawdust particles in the polypropylene composites. | Islam et al. (2019) [141] |
Prosopis juliflora fiber/CaCO3,/TiO2 and Al2O3 | Epoxy | Hybrid composites were prepared by using prosopis juliflora fiber with three different filler materials (CaCO3, TiO2, and Al2O3). The composites with Al2O3 filler material attained higher mechanical properties than the other two filler materials. | Venkateshwar et al. (2019) [142] | |
Kenaf/magnesium hydroxide | Epoxy | The hybrid composites were prepared by the addition of magnesium hydroxide (MH) filler-reinforced kenaf/epoxy hybrid composites with various weight percentages (10%, 15%, 20%, and 25%). When compared to the rest of the hybrid composites produced in this investigation, the 20% MH/kenaf/epoxy hybrid composites had better mechanical strength, thermal stability, and dynamic characteristics. | Saba et al. (2019) [143] | |
Bamboo fiber/fly ash | Polypropylene | Hybrid composites were prepared by using bamboo fiber and polypropylene along with different concentrations of fly ash. With the addition of 25 wt% of fiber in the composition, the flexural strength and bending moment were increased. | Venkateswara Rao et al. (2019) [144] | |
Coir fiber/graphene nanosheet | Polyester | The mechanical characteristics of hybrid composites with graphene loadings of 1.5 wt% were better. | Abdellaoui et al. (2019) [145] | |
Banana fiber/fly ash | Epoxy | The composites were prepared with banana fiber/epoxy and banana fiber/fly ash/epoxy hybrid composites. In comparison to epoxy composite, it was found that fly ash/epoxy composite had better properties. | Kauser et al. (2019) [146] | |
Hemp/sisal/silica nanoparticles | Epoxy | Compression molding was used to make hemp–sisal natural fiber-reinforced hybrid epoxy composites with different proportions of silica nanoparticles (0, 1, 2, 3, and 4 wt%). The composites containing 2 wt% silica nanoparticles exhibited maximum tensile strength, impact strength, and hardness. | Singh et al. (2021) [147] | |
Sisal fiber/mustard cake/pine needle | Polyester | The hybrid polymer composites based on 40 wt% sisal and 5 wt% pine needles delivered superior mechanical and wear properties compared to other combinations. | Kumar et al. (2017) [148] | |
Coir fiber/aramid fiber/coconut shell powder | Vinyl ester | The hybrid polymer composites based on 20 wt% coir fiber, 10 wt% aramid fiber, and 5 wt% coconut shell particles showed a 52% increase in hardness, 145% increase in tensile strength, and 75% increase in the modulus compared to other combinations. | Udaya Kumar et al. (2018) [149] | |
Hemp fiber/eggshell | Epoxy | The hybrid polymer composites were prepared by using hemp fiber and eggshell particles using varying proportions of fillers at 0.25%, 0.5 %, and 1.0%. The mechanical results demonstrated that adding fiber to epoxy resin improved its load-bearing properties. Adding up to 0.5% eggshell as a filler enhanced the composite’s thermal stability. | Inbakumar and Ramesh (2018) [150] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arumugam, S.; Kandasamy, J.; Venkatesan, S.; Murugan, R.; Lakshmi Narayanan, V.; Sultan, M.T.H.; Shahar, F.S.; Shah, A.U.M.; Khan, T.; Sebaey, T.A. A Review on the Effect of Fabric Reinforcement on Strength Enhancement of Natural Fiber Composites. Materials 2022, 15, 3025. https://doi.org/10.3390/ma15093025
Arumugam S, Kandasamy J, Venkatesan S, Murugan R, Lakshmi Narayanan V, Sultan MTH, Shahar FS, Shah AUM, Khan T, Sebaey TA. A Review on the Effect of Fabric Reinforcement on Strength Enhancement of Natural Fiber Composites. Materials. 2022; 15(9):3025. https://doi.org/10.3390/ma15093025
Chicago/Turabian StyleArumugam, Soundhar, Jayakrishna Kandasamy, Subramani Venkatesan, Rajesh Murugan, Valayapathy Lakshmi Narayanan, Mohamed Thariq Hameed Sultan, Farah Syazwani Shahar, Ain Umaira Md Shah, Tabrej Khan, and Tamer Ali Sebaey. 2022. "A Review on the Effect of Fabric Reinforcement on Strength Enhancement of Natural Fiber Composites" Materials 15, no. 9: 3025. https://doi.org/10.3390/ma15093025
APA StyleArumugam, S., Kandasamy, J., Venkatesan, S., Murugan, R., Lakshmi Narayanan, V., Sultan, M. T. H., Shahar, F. S., Shah, A. U. M., Khan, T., & Sebaey, T. A. (2022). A Review on the Effect of Fabric Reinforcement on Strength Enhancement of Natural Fiber Composites. Materials, 15(9), 3025. https://doi.org/10.3390/ma15093025