Development of Eco-Friendly Concrete Mix Using Recycled Aggregates: Structural Performance and Pore Feature Study Using Image Analysis
Abstract
:1. Introduction
2. Experimental Plan
2.1. Aggregates and Other Materials
Mix Design and Preparation of Samples
3. Analysis Methods
3.1. Structural Behavior
Pore Feature and Image Analysis
4. Results and Discussions
4.1. Strength Behavior of PC-RBA
4.1.1. Compressive Strength
4.1.2. Flexural Strength
4.2. Pore Feature Analysis
5. Summary of the Test Results
6. Conclusions
7. Limitations and Future Scope
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. A review of recycled aggregate in concrete applications (2000–2017). Constr. Build. Mater. 2018, 172, 272–292. [Google Scholar] [CrossRef]
- Bektas, F.; Wang, K.; Ceylan, H. Effects of crushed clay brick aggregate on mortar durability. Constr. Build. Mater. 2009, 23, 1909–1914. [Google Scholar] [CrossRef]
- Singh, S.; Ransinchung, G.D.; Monu, K. Sustainable lean concrete mixes containing wastes originating from roads and industries. Constr. Build. Mater. 2019, 209, 619–630. [Google Scholar] [CrossRef]
- Mazumder, A.R.; Kabir, A.; Yazdani, N. Performance of Overburnt Distorted Bricks as Aggregates in Pavement Works. J. Mater. Civ. Eng. 2006, 18, 777–785. [Google Scholar] [CrossRef]
- Sarkar, D.; Pal, M.; Sarkar, A.K.; Mishra, U. Evaluation of the Properties of Bituminous Concrete Prepared from Brick-Stone Mix Aggregate. Adv. Mater. Sci. Eng. 2016, 2016, 2761038. [Google Scholar] [CrossRef] [Green Version]
- Zachariah, J.P.; Sarkar, P.P.; Debnath, B.; Pal, M. Effect of polypropylene fibres on bituminous concrete with brick as aggregate. Constr. Build. Mater. 2018, 168, 867–876. [Google Scholar] [CrossRef]
- Zachariah, J.P.; Sarkar, P.P.; Pal, M. A study on the moisture damage and rutting resistance of polypropylene modified bituminous mixes with crushed brick aggregate wastes. Constr. Build. Mater. 2021, 269, 121357. [Google Scholar] [CrossRef]
- Yunchao, T.; Zheng, C.; Wanhui, F.; Yumei, N.; Cong, L.; Jieming, C. Combined effects of nano-silica and silica fume on the mechanical behavior of recycled aggregate concrete. Nanotechnol. Rev. 2021, 10, 819–838. [Google Scholar] [CrossRef]
- Salehi, S.; Arashpour, M.; Kodikara, J.; Guppy, R. Sustainable pavement construction: A systematic literature review of environmental and economic analysis of recycled materials. J. Clean. Prod. 2021, 313, 127936. [Google Scholar] [CrossRef]
- Prasad, D.; Singh, B.; Suman, S.K. Utilization of recycled concrete aggregate in bituminous mixtures: A comprehensive review. Constr. Build. Mater. 2022, 326, 126859. [Google Scholar] [CrossRef]
- Ram, V.G.; Kishore, K.C.; Kalidindi, S.N. Environmental benefits of construction and demolition debris recycling: Evidence from an Indian case study using life cycle assessment. J. Clean. Prod. 2020, 255, 120258. [Google Scholar] [CrossRef]
- Guo, H.; Shi, C.; Guan, X.; Zhu, J.; Ding, Y.; Ling, T.-C.; Zhang, H.; Wang, Y. Durability of recycled aggregate concrete—A review. Cem. Concr. Compos. 2018, 89, 251–259. [Google Scholar] [CrossRef]
- Etxeberria, M.; Vázquez, E.; Mari, A.; Barra, M. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Concr. Res. 2007, 37, 735–742. [Google Scholar] [CrossRef]
- Etxeberria, M.; Mari, A.; Vázquez, E. Recycled aggregate concrete as structural material. Mater. Struct. 2006, 40, 529–541. [Google Scholar] [CrossRef]
- Singh, S.; Ransinchung, G.; Monu, K.; Kumar, P. Laboratory investigation of RAP aggregates for dry lean concrete mixes. Constr. Build. Mater. 2018, 166, 808–816. [Google Scholar] [CrossRef]
- Prasad, D.; Pandey, A.; Kumar, B. Sustainable production of recycled concrete aggregates by lime treatment and mechanical abrasion for M40 grade concrete. Constr. Build. Mater. 2021, 268, 121119. [Google Scholar] [CrossRef]
- Mohammed, T.U.; Hasnat, A.; Awal, M.A.; Bosunia, S.Z. Recycling of Brick Aggregate Concrete as Coarse Aggregate. J. Mater. Civ. Eng. 2015, 27, B4014005. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, X.; Shen, N.; Tian, H.; Fan, X.; Lu, J. Mechanical properties of pervious concrete with recycled aggregate. Comput. Concr. 2018, 21, 623–635. [Google Scholar] [CrossRef]
- Toghroli, A.; Shariati, M.; Sajedi, F.; Ibrahim, Z.; Koting, S.; Mohamad, E.T.; Khorami, M. A review on pavement porous concrete using recycled waste materials. Smart Struct. Syst. 2018, 22, 433–440. [Google Scholar] [CrossRef]
- Debnath, B.; Sarkar, P.P. Pervious concrete as an alternative pavement strategy: A state-of-the-art review. Int. J. Pavement Eng. 2018, 21, 1516–1531. [Google Scholar] [CrossRef]
- Mullaney, J.; Lucke, T. Practical Review of Pervious Pavement Designs. Clean-Soil Air Water 2013, 42, 111–124. [Google Scholar] [CrossRef]
- Debnath, B.; Sarkar, P.P. Clogging in Pervious Concrete Pavement Made with Non-conventional Aggregates: Performance Evaluation and Rehabilitation Technique. Arab. J. Sci. Eng. 2021, 46, 10381–10396. [Google Scholar] [CrossRef]
- Sartipi, M.; Sartipi, F. Stormwater retention using pervious concrete pavement: Great Western Sydney case study. Case Stud. Constr. Mater. 2019, 11, e00274. [Google Scholar] [CrossRef]
- Khankhaje, E.; Rafieizonooz, M.; Salim, M.R.; Khan, R.; Mirza, J.; Siong, H.C. Salmiati Sustainable clean pervious concrete pavement production incorporating palm oil fuel ash as cement replacement. J. Clean. Prod. 2018, 172, 1476–1485. [Google Scholar] [CrossRef]
- Imran, H.; Akib, S.; Karim, M.R. Permeable pavement and stormwater management systems: A review. Environ. Technol. 2013, 34, 2649–2656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Chu, R.; Wang, H.; Zhang, L.; Chen, X.; Du, Y. Alleviating urban heat island effect using high-conductivity permeable concrete pavement. J. Clean. Prod. 2019, 237, 117722. [Google Scholar] [CrossRef]
- Chandrappa, A.K.; Biligiri, K.P. Pervious concrete as a sustainable pavement material—Research findings and future prospects: A state-of-the-art review. Constr. Build. Mater. 2016, 111, 262–274. [Google Scholar] [CrossRef]
- Debnath, B.; Sarkar, P.P. Permeability prediction and pore structure feature of pervious concrete using brick as aggregate. Constr. Build. Mater. 2019, 213, 643–651. [Google Scholar] [CrossRef]
- Debnath, B.; Sarkar, P.P. Prediction and model development for fatigue performance of pervious concrete made with over burnt brick aggregate. Mater. Struct. 2020, 53, 86. [Google Scholar] [CrossRef]
- Zaetang, Y.; Wongsa, A.; Sata, V.; Chindaprasirt, P. Use of lightweight aggregates in pervious concrete. Constr. Build. Mater. 2013, 48, 585–591. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Elmoaty, A.E.M.A.; Fawzy, A.M. Experimental investigation on permeability indices and strength of modified pervious concrete with recycled concrete aggregate. Constr. Build. Mater. 2018, 193, 105–127. [Google Scholar] [CrossRef]
- Sata, V.; Wongsa, A.; Chindaprasirt, P. Properties of pervious geopolymer concrete using recycled aggregates. Constr. Build. Mater. 2013, 42, 33–39. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.; Dong, Q.; Yuan, J.; Hong, Q. Mechanical performance study of pervious concrete using steel slag aggregate through laboratory tests and numerical simulation. J. Clean. Prod. 2020, 262, 121208. [Google Scholar] [CrossRef]
- Zaetang, Y.; Wongsa, A.; Sata, V.; Chindaprasirt, P. Use of coal ash as geopolymer binder and coarse aggregate in pervious concrete. Constr. Build. Mater. 2015, 96, 289–295. [Google Scholar] [CrossRef]
- Debnath, B.; Sarkar, P.P. Application of Nano SiO2 in Pervious Concrete Pavement Using Waste Bricks as Coarse Aggregate. Arab. J. Sci. Eng. 2022, 1–21. [Google Scholar] [CrossRef]
- Debnath, B.; Sarkar, P.P. Characterization of pervious concrete using over burnt brick as coarse aggregate. Constr. Build. Mater. 2020, 242, 118154. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, S.; Wang, B.; Zhao, Y.; Kang, M.; Wang, P. Properties of pervious concrete with steel slag as aggregates and different mineral admixtures as binders. Constr. Build. Mater. 2020, 257, 119543. [Google Scholar] [CrossRef]
- Gaedicke, C.; Marines, A.; Miankodila, F. Assessing the abrasion resistance of cores in virgin and recycled aggregate pervious concrete. Constr. Build. Mater. 2014, 68, 701–708. [Google Scholar] [CrossRef]
- IS 2386; Part III, Method of Test for Aggregate for Concrete. Part III- Specific Gravity, Density, Voids, Absorption and Bulking. Bureau of Indian Standards: New Delhi, India, 1963.
- Bureau of Indian Standards. IS 2386; Part IV, Methods of Test for Aggregates for Concrete, Part 4: Mechanical Properties [CED 2: Cement and Concrete]; Bureau of Indian Standards: New Delhi, India, 2002; pp. 1–37. [Google Scholar]
- Bureau of Indian Standards. IS:516; Method of Tests for Strength of Concrete; Bureau of Indian Standards: New Delhi, India, 2004; pp. 516–1959. [Google Scholar] [CrossRef]
- ASTM International. C1754/C1754-12; Standard Test Method for Density and Void Content of Hardened Pervious Concrete; ASTM International: West Conshohocken, PA, USA, 2012; p. 3. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, M.; Chen, Z.; Wu, C.; Chen, B.; Li, C.; Li, L. Seismic performance evaluation of recycled aggregate concrete-filled steel tubular columns with field strain detected via a novel mark-free vision method. Structures 2022, 37, 426–441. [Google Scholar] [CrossRef]
- Debnath, B.; Sarkar, P.P. Quantification of random pore features of porous concrete mixes prepared with brick aggregate: An application of stereology and mathematical morphology. Constr. Build. Mater. 2021, 294, 123594. [Google Scholar] [CrossRef]
- American Concrete Institute. ACI-522R. Report on Pervious Concrete, ACI Comm. 522; American Concrete Institute: Indianapolis, IN, USA, 2010; pp. 1–42. [Google Scholar]
- Joshaghani, A.; Ramezanianpour, A.A.; Ataei, O.; Golroo, A. Optimizing pervious concrete pavement mixture design by using the Taguchi method. Constr. Build. Mater. 2015, 101, 317–325. [Google Scholar] [CrossRef]
Gradation | Size of Aggregate (Percentage Passing) | ||||
---|---|---|---|---|---|
13.2 mm | 12.5 mm | 9.5 mm | 6.3 mm | 4.75 mm | |
RBA-12.5 | 100 | 0 | 0 | 0 | 0 |
RBA-9.5 | 100 | 100 | 0 | 0 | 0 |
RBA-4.75 | 100 | 100 | 100 | 100 | 0 |
Properties | NA | RBA | NBA (Over-Burnt) | Standard Guidelines |
---|---|---|---|---|
Impact value (%) | 18.4 | 33.4 | 36.2 | IS:2386, Part IV [40] |
Abrasion value (%) | 25.6 | 40.8 | 45.3 | IS:2386, Part IV [40] |
Crushing value (%) | 22.5 | 36.5 | 38.7 | IS:2386, Part IV [40] |
Specific gravity | 2.781 | 1.975 | 1.912 | IS:2386, Part III [39] |
Mix Type | NA (%) | RBA (%) | NA (kg/m3) | RBA (kg/m3) | Binder (kg/m3) | Sand (kg/m3) | Water (kg/m3) | Admixture (kg/m3) |
---|---|---|---|---|---|---|---|---|
RBA-0 | 100 | 0 | 1619.57 | 0 | 242.42 | 161.83 | 72.73 | 1.94 |
RBA-20 | 80 | 20 | 1295.66 | 230.12 | 242.42 | 161.83 | 72.73 | 1.94 |
RBA-40 | 60 | 40 | 971.74 | 460.24 | 242.42 | 161.83 | 72.73 | 1.94 |
RBA-60 | 40 | 60 | 647.83 | 690.36 | 242.42 | 161.83 | 72.73 | 1.94 |
RBA-80 | 20 | 80 | 323.91 | 920.48 | 242.42 | 161.83 | 72.73 | 1.94 |
RBA-100 | 0 | 100 | 0 | 1150.60 | 242.42 | 161.83 | 72.73 | 1.94 |
Mix Type | R-1 | R-2 | R-3 | St Dev | Average | Experimental Porosity (nexp) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | ||||
RBA-0 | 21.4 | 24.2 | 21.6 | 22.4 | 25.4 | 23.2 | 18.7 | 20.8 | 21.7 | 24.3 | 20.5 | 23.4 | 21.1 | 18.3 | 20.1 | 1.97 | 21.81 | 20.4 |
RBA-20 | 22.4 | 23.6 | 20.7 | 19.7 | 21.4 | 23.7 | 26.2 | 21.5 | 20.6 | 25.4 | 23.4 | 20.2 | 19.7 | 23.6 | 22.4 | 1.94 | 22.30 | 21.3 |
RBA-40 | 21.6 | 22.4 | 22.3 | 24.6 | 22.7 | 23.4 | 21.8 | 22.6 | 25.1 | 23.2 | 20.6 | 22.1 | 21.9 | 23.6 | 22.7 | 1.11 | 22.71 | 21.4 |
RBA-60 | 23.6 | 25.1 | 20.4 | 22.7 | 23.4 | 21.8 | 26.7 | 21.4 | 25.3 | 24.1 | 21.3 | 20.2 | 21.4 | 23.6 | 21.4 | 1.86 | 22.83 | 22.1 |
RBA-80 | 21.5 | 22.3 | 21.7 | 24.1 | 23.5 | 24.3 | 22.4 | 22.9 | 21.6 | 23.4 | 21.4 | 25.1 | 22.2 | 23.6 | 21.7 | 1.13 | 22.78 | 21.9 |
RBA-100 | 22.6 | 25.4 | 23.1 | 22.3 | 21.6 | 24.8 | 22.7 | 23.3 | 21.6 | 22.9 | 24.7 | 23.5 | 24.1 | 23.5 | 21.4 | 1.17 | 23.17 | 22.7 |
RBA-0 | 28.4 | 25.3 | 25.6 | 24.1 | 25.3 | 27.4 | 24.6 | 25.8 | 26.8 | 26.9 | 27.8 | 25.6 | 28.9 | 26.8 | 25.7 | 1.34 | 26.33 | 26.1 |
RBA-20 | 26.4 | 25.5 | 26.5 | 27.3 | 27.7 | 26.3 | 26.9 | 25.8 | 26.1 | 25.5 | 26.2 | 27.4 | 26.7 | 26.2 | 28.4 | 0.79 | 26.59 | 26.4 |
RBA-40 | 27.4 | 26.8 | 26.7 | 25.8 | 27.4 | 28.3 | 25.7 | 26.8 | 25.9 | 26.3 | 27.4 | 25.9 | 27.3 | 26.4 | 25.7 | 0.76 | 26.65 | 26.6 |
RBA-60 | 26.7 | 28.6 | 25.6 | 28.4 | 27.6 | 25.7 | 28.3 | 27.4 | 26.8 | 25.8 | 26.3 | 25.8 | 29.1 | 27.4 | 28.4 | 1.15 | 27.19 | 26.7 |
RBA-80 | 27.8 | 28.9 | 26.7 | 29.4 | 28.4 | 27.6 | 28.3 | 28.7 | 28.9 | 26.8 | 27.7 | 28.8 | 29.6 | 27.4 | 26.8 | 0.91 | 28.12 | 27.1 |
RBA-100 | 29.4 | 27.6 | 28.7 | 28.3 | 28.4 | 27.5 | 29.5 | 27.4 | 28.5 | 26.7 | 28.7 | 26.7 | 25.9 | 27.5 | 28.8 | 1.00 | 27.97 | 27.2 |
RBA-0 | 31.2 | 32.5 | 29.8 | 30.7 | 30.6 | 31.6 | 31.7 | 31.5 | 30.2 | 30.8 | 33.4 | 31.4 | 32.1 | 31.6 | 32.2 | 0.90 | 31.42 | 30.2 |
RBA-20 | 32.4 | 33.6 | 32.7 | 33.4 | 31.5 | 33.8 | 31.2 | 32.4 | 32.8 | 33.6 | 34.6 | 33.4 | 32.8 | 31.8 | 32.7 | 0.89 | 32.85 | 30.5 |
RBA-40 | 33.2 | 32.6 | 32.1 | 32.8 | 33.2 | 36.4 | 33.2 | 31.5 | 31.4 | 32.3 | 31.9 | 32.7 | 32.5 | 33.4 | 31.7 | 1.16 | 32.73 | 30.1 |
RBA-60 | 33.5 | 31.6 | 32.7 | 32.5 | 32.4 | 33.6 | 33.8 | 31.5 | 34.2 | 31.7 | 32.6 | 31.8 | 32.7 | 33.8 | 33.4 | 0.86 | 32.79 | 31.2 |
RBA-80 | 32.7 | 32.8 | 32.1 | 30.8 | 34.5 | 32.2 | 32.6 | 31.6 | 33.4 | 32.6 | 32.8 | 31.9 | 33.5 | 31.9 | 32.5 | 0.84 | 32.53 | 30.8 |
RBA-100 | 34.3 | 32.1 | 31.5 | 30.6 | 32.1 | 31.6 | 30.7 | 31.8 | 31.1 | 32.5 | 32.2 | 33.1 | 30.8 | 34.6 | 31.4 | 1.16 | 32.03 | 31.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deb, P.; Debnath, B.; Hasan, M.; Alqarni, A.S.; Alaskar, A.; Alsabhan, A.H.; Khan, M.A.; Alam, S.; Hashim, K.S. Development of Eco-Friendly Concrete Mix Using Recycled Aggregates: Structural Performance and Pore Feature Study Using Image Analysis. Materials 2022, 15, 2953. https://doi.org/10.3390/ma15082953
Deb P, Debnath B, Hasan M, Alqarni AS, Alaskar A, Alsabhan AH, Khan MA, Alam S, Hashim KS. Development of Eco-Friendly Concrete Mix Using Recycled Aggregates: Structural Performance and Pore Feature Study Using Image Analysis. Materials. 2022; 15(8):2953. https://doi.org/10.3390/ma15082953
Chicago/Turabian StyleDeb, Plaban, Barnali Debnath, Murtaza Hasan, Ali S. Alqarni, Abdulaziz Alaskar, Abdullah H. Alsabhan, Mohammad Amir Khan, Shamshad Alam, and Khalid S. Hashim. 2022. "Development of Eco-Friendly Concrete Mix Using Recycled Aggregates: Structural Performance and Pore Feature Study Using Image Analysis" Materials 15, no. 8: 2953. https://doi.org/10.3390/ma15082953
APA StyleDeb, P., Debnath, B., Hasan, M., Alqarni, A. S., Alaskar, A., Alsabhan, A. H., Khan, M. A., Alam, S., & Hashim, K. S. (2022). Development of Eco-Friendly Concrete Mix Using Recycled Aggregates: Structural Performance and Pore Feature Study Using Image Analysis. Materials, 15(8), 2953. https://doi.org/10.3390/ma15082953