Experimental and Computational Studies of Compression and Deformation Behavior of Hafnium Diboride to 208 GPa
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, H.; Sun, W.; Li, X.; Chen, H.; Guan, S.; Liu, P.; Wang, Q.; Li, X.; He, D.; Peng, F. Study of the compression behavior and elastic properties of HfB2 ceramics using experimental method and first-principles calculations. J. Alloy. Compd. 2019, 808, 151764. [Google Scholar] [CrossRef]
- Liang, H.; Peng, F.; Guan, S.; Tan, L.; Chen, H.; Lei, L.; He, D.; Lu, C. Abnormal physical behaviors of hafnium diboride under high pressure. Appl. Phys. Lett. 2019, 115, 231903. [Google Scholar] [CrossRef]
- Kovalev, D.Y.; Shilkin, S.P.; Konovalikhin, S.V.; Kalinnikov, G.V.; Korobov, I.I.; Kravchenko, S.E.; Khomenko, N.Y.; Andrievskii, R.A. Thermal expansion of micro-and nanocrystalline HfB 2. High Temp. 2019, 57, 32–36. [Google Scholar] [CrossRef]
- Carney, C.M. Oxidation resistance of hafnium diboride—Silicon carbide from 1400 to 2000 °C. J. Mater. Sci. 2009, 44, 5673–5681. [Google Scholar] [CrossRef]
- Windsor, C.; Astbury, J.O.; Davidson, J.J.; McFadzean, C.J.; Morgan, J.G.; Wilson, C.L.; Humphry-Baker, S.A. Tungsten boride shields in a spherical tokamak fusion power plant. Nucl. Fusion 2021, 61, 086018. [Google Scholar] [CrossRef]
- Hao, Y.; Zhu, J.; Zhang, L.; Ren, H.; Qu, J. Structure phase transition and elastic properties of hafnium: First-principles study. Philos. Mag. Lett. 2011, 91, 61–69. [Google Scholar] [CrossRef]
- Shu-Jie, Y.; Liang-Chen, C.; Chang-Qing, J. Hydrostaticity of pressure media in diamond anvil cells. Chin. Phys. Lett. 2009, 26, 096202. [Google Scholar] [CrossRef][Green Version]
- Klotz, S.; Chervin, J.C.; Munsch, P.; Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 2009, 42, 075413. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.; Wang, H.; Zhang, X.; Iitaka, T.; Ma, Y. First-Principles Prediction on the High-Pressure Structures of Transition Metal Diborides (TMB2, TM = Sc, Ti, Y, Zr). Inorg. Chem. 2010, 49, 6859–6864. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Balasingh, C.; Mao, H.K.; Hemley, R.J.; Shu, J. Analysis of lattice strains measured under nonhydrostatic pressure. J. Appl. Phys. 1998, 83, 7567–7575. [Google Scholar] [CrossRef]
- Lutterotti, L.; Matthies, S.; Wenk, H.R. MAUD: A friendly Java program for material analysis using diffraction. IUCr Newsl. CPD 1999, 21. [Google Scholar]
- Yokoo, M.; Kawai, N.; Nakamura, K.G.; Kondo, K.I.; Tange, Y.; Tsuchiya, T. Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa. Phys. Rev. B 2009, 80, 104114. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Le Page, Y.; Saxe, P. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 2002, 65, 104104. [Google Scholar] [CrossRef]
- Wu, X.; Vanderbilt, D.; Hamann, D.R. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B 2005, 72, 035105. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Reuß, A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Voigt, W. Lehrbuch der Kristallphysik (Leipzig: Teubner); Springer: Berlin/Heidelberg, Germany, 1928. [Google Scholar]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [PubMed]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Giannozzi, P.; Baseggio, O.; Bonfà, P.; Brunato, D.; Car, R.; Carnimeo, I.; Cavazzoni, C.; de Gironcoli, S.; Delugas, P.; Ferrari Ruffino, D.; et al. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 2020, 152, 154105. [Google Scholar] [CrossRef] [PubMed]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, H.; John, S.T.; Chen, C. Indentation strength of ultraincompressible rhenium boride, carbide, and nitride from first-principles calculations. Phys. Rev. B 2012, 86, 014108. [Google Scholar] [CrossRef]
- Fan, T.-W.; Ke, J.L.; Fu, L.; Tang, B.Y.; Peng, L.M.; Ding, W.J. Ideal strength of Mg2X (X = Si, Ge, Sn and Pb) from first-principles. J. Magnes. Alloy. 2013, 1, 163. [Google Scholar] [CrossRef]
- Vajeeston, P.; Ravindran, P.; Ravi, C.; Asokamani, R. Electronic structure, bonding, and ground-state properties of AlB 2-type transition-metal diborides. Phys. Rev. B 2001, 63, 045115. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, X.; Han, J.; Li, J.; Han, W. Electronic structure, elasticity and hardness of diborides of zirconium and hafnium: First principles calculations. Comput. Mater. Sci. 2008, 44, 411–421. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, X.; Li, J.; Hu, P.; Han, J. The ideal strength of transition metal diborides TMB2 (TM= Ti, Zr, Hf): Plastic anisotropy and the role of prismatic slip. Scr. Mater. 2010, 62, 625–628. [Google Scholar] [CrossRef]
- Fahrenholtz, W.G.; Hilmas, G.E.; Talmy, I.G.; Zaykoski, J.A. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 2007, 90, 1347–1364. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, H.; Yildirim, T. Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles and neutron scattering study. Phys. Rev. B 2007, 76, 184113. [Google Scholar] [CrossRef]
- Chung, H.-Y.; Weinberger, M.B.; Levine, J.B.; Kavner, A.; Yang, J.M.; Tolbert, S.H.; Kaner, R.B. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 2007, 316, 436–439. [Google Scholar] [CrossRef]
- Burrage, K.C.; Park, C.; Vohra, Y.K. Shear strength measurements and hydrostatic compression of rhenium diboride under high pressures. J. Appl. Phys. 2021, 129, 205901. [Google Scholar] [CrossRef]
- Kavner, A.; Armentrout, M.M.; Rainey, E.S.; Xie, M.; Weaver, B.E.; Tolbert, S.H.; Kaner, R.B. Thermoelastic properties of ReB2 at high pressures and temperatures and comparison with Pt, Os, and Re. J. Appl. Phys. 2011, 110, 093518. [Google Scholar] [CrossRef]
- Frotscher, M.; Senyshyn, A.; Albert, B. Neutron diffraction at metal borides, Ru2B3 and Os2B3. Z. Anorg. Allg. Chem. 2012, 638, 2078–2080. [Google Scholar] [CrossRef]
- Burrage, K.C.; Lin, C.M.; Chen, W.C.; Chen, C.C.; Vohra, Y.K. Electronic structure and anisotropic compression of Os2B3 to 358 GPa. J. Phys. Condens. Matter 2020, 32, 405703. [Google Scholar] [CrossRef]
- Lech, A.T.; Turner, C.L.; Lei, J.; Mohammadi, R.; Tolbert, S.H.; Kaner, R.B. Superhard rhenium/tungsten diboride solid solutions. J. Am. Chem. Soc. 2016, 138, 14398–14408. [Google Scholar] [CrossRef]
- Zhang, G.-J.; Ni, D.W.; Zou, J.; Liu, H.T.; Wu, W.W.; Liu, J.X.; Suzuki, T.S.; Sakka, Y. Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra-high temperature ceramics—A review. J. Eur. Ceram. Soc. 2018, 38, 371–389. [Google Scholar] [CrossRef]
- Frenkel, J.A. Zur theorie der elastizitätsgrenze und der festigkeit kristallinischer körper. Z. Phys. 1926, 37, 572–609. [Google Scholar] [CrossRef]
Tensile Deformation | Shear Deformation | ||||
---|---|---|---|---|---|
σmax | εmax | τmax | εmax | ||
[001] | 56.84 | 0.33 | (001) [110] | 52.06 | 0.30 |
[100] | 41.31 | 0.13 | (001) [1−10] | 53.01 | 0.33 |
[110] | 61.59 | 0.24 | (110) [001] | 46.94 | 0.27 |
[111] | 51.32 | 0.20 | (110) [1−10] | 44.82 | 0.24 |
(1−10) [001] | 46.78 | 0.29 | |||
(1−10) [110] | 39.16 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burrage, K.; Lin, C.-M.; Chen, C.-C.; Vohra, Y.K. Experimental and Computational Studies of Compression and Deformation Behavior of Hafnium Diboride to 208 GPa. Materials 2022, 15, 2762. https://doi.org/10.3390/ma15082762
Burrage K, Lin C-M, Chen C-C, Vohra YK. Experimental and Computational Studies of Compression and Deformation Behavior of Hafnium Diboride to 208 GPa. Materials. 2022; 15(8):2762. https://doi.org/10.3390/ma15082762
Chicago/Turabian StyleBurrage, Kaleb, Chia-Min Lin, Cheng-Chien Chen, and Yogesh K. Vohra. 2022. "Experimental and Computational Studies of Compression and Deformation Behavior of Hafnium Diboride to 208 GPa" Materials 15, no. 8: 2762. https://doi.org/10.3390/ma15082762
APA StyleBurrage, K., Lin, C.-M., Chen, C.-C., & Vohra, Y. K. (2022). Experimental and Computational Studies of Compression and Deformation Behavior of Hafnium Diboride to 208 GPa. Materials, 15(8), 2762. https://doi.org/10.3390/ma15082762