Ferromagnetism and Superconductivity in CaRuO3/YBa2Cu3O7-δ Heterostructures
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, M.K.; Ashburn, J.R.; Torng, C.J.; Hor, P.H.; Meng, R.L.; Gao, L.; Huang, Z.J.; Wang, Y.Q.; Chu, C.W. Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 1987, 58, 908–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foltyn, S.R.; Civale, L.; Macmanus-Driscoll, J.L.; Jia, Q.X.; Maiorov, B.; Wang, H.; Maley, M. Materials science challenges for high-temperature superconducting wire. Nat. Mater. 2007, 6, 631–642. [Google Scholar] [CrossRef]
- Larbalestier, D.; Gurevich, A.; Feldmann, D.M.; Polyanskii, A. High-Tc superconducting materials for electric power applications. Nature 2001, 414, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Seidel, P. Applied Superconductivity: Handbook on Devices and Applications; Seidel, P., Ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Conder, K. Oxygen diffusion in the superconductors of the YBaCuO family: Isotope exchange measurements and models. Mater. Sci. Eng. R Rep. 2001, 32, 41–102. [Google Scholar] [CrossRef]
- Jha, A.K.; Matsumoto, K. Superconductive REBCO thin films and their nanocomposites: The role of rare-earth oxides in promoting sustainable energy. Front. Phys. 2019, 7, 82. [Google Scholar] [CrossRef]
- Yan, H.; Abdelhadi, M.M.; Jung, J.A.; Willemsen, B.A.; Kihlstrom, K.E. Exponential dependence of the vortex pinning potential on current density in high-Tc superconductors. Phys. Rev. B 2005, 72, 064522. [Google Scholar] [CrossRef]
- Jooss, C.; Warthmann, R.; Kronmüller, H.; Haage, T.; Habermeier, H.U.; Zegenhagen, J. Vortex pinning due to strong quasiparticle scattering at antiphase boundaries in YBa2Cu3O7-δ. Phys. Rev. Lett. 1999, 82, 632–635. [Google Scholar] [CrossRef]
- Theuss, H.; Kronmüller, H. The influence of a point defect structure on the magnetic properties of YBa2Cu3O7-δ polycrystals. Phys. C 1991, 177, 253–261. [Google Scholar] [CrossRef]
- Opherden, L.; Sieger, M.; Pahlke, P.; Hühne, R.; Schultz, L.; Meled, A.; Van Tendeloo, G.; Nast, R.; Holzapfel, B.; Marco, B.; et al. Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates. Sci. Rep. 2016, 6, 21188. [Google Scholar] [CrossRef]
- Crisan, A.; Dang, V.S.; Mikheenko, P.; Ionescu, A.M.; Ivan, I.; Miu, L. Synergetic pinning centres in BaZrO3-doped YBa2Cu3O7-x films induced by SrTiO3 nano-layers. Supercond. Sci. Technol. 2017, 30, 045012. [Google Scholar] [CrossRef] [Green Version]
- Rouco, V.; Córdoba, R.; De Teresa, J.M.; Rodríguez, L.A.; Navau, C.; Del-Valle, N.; Via, G.; Sánchez, A.; Monton, C.; Kronast, F.; et al. Competition between Superconductor—Ferromagnetic stray magnetic fields in YBa2Cu3O7-x films pierced with Co nano-rods. Sci. Rep. 2017, 7, 5663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stahl, C.; Walker, P.; Treiber, S.; Christiani, G.; Schütz, G.; Albrecht, J. Using magnetic coupling in bilayers of superconducting YBCO and soft-magnetic CoFeB to map supercurrent flow. EPL 2014, 106, 27002. [Google Scholar] [CrossRef]
- De Andrés Prada, R.; Gaina, R.; Biškup, N.; Varela, M.; Stahn, J.; Bernhard, C. Controlling the strength of ferromagnetic order in YBa2Cu3O7/La2/3Ca1/3MnO3 multilayers. Phys. Rev. B 2019, 100, 115129. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.W.; Wray, L.A.; Jeng, H.T.; Tra, V.T.; Lee, J.M.; Langner, M.C.; Chen, J.M.; Roy, S.; Chu, Y.H.; Schoenlein, R.W.; et al. Selective interlayer ferromagnetic coupling between the Cu spins in YBa2Cu3O7-x grown on top of La0.7Ca0.3MnO3. Sci. Rep. 2015, 5, 16690. [Google Scholar] [CrossRef] [Green Version]
- Soltan, S.; Albrecht, J.; Habermeier, H.U. Ferromagnetic/superconducting bilayer structure: A model system for spin diffusion length estimation. Phys. Rev. B 2004, 70, 144517. [Google Scholar] [CrossRef] [Green Version]
- Samal, D.; Anil Kumar, P.S. Evidence for decoupled two-dimensional vortex behavior of YBa2Cu3O7-δ in La0.7Sr0.3MnO3/YBa2Cu3O7-δ/La0.7Sr0.3MnO3 trilayer. J. Appl. Phys. 2010, 108, 123909. [Google Scholar] [CrossRef]
- Sander, A.; Orfila, G.; Sanchez-Manzano, D.; Reyren, N.; Mawass, M.A.; Gallego, F.; Collin, S.; Bouzehouane, K.; Höflich, K.; Kronast, F.; et al. Superconducting imprint of magnetic textures in ferromagnets with perpendicular magnetic anisotropy. Sci. Rep. 2021, 11, 20788. [Google Scholar] [CrossRef]
- Buzdin, A.I.; Ryazanov, V.V. Proximity effect in superconductor-ferromagnet heterostructures. Comptes Rendus Phys. 2006, 7, 107–115. [Google Scholar] [CrossRef]
- Paull, O.H.C.; Pan, A.V.; Causer, G.L.; Fedoseev, S.A.; Jones, A.; Liu, X.; Rosenfeld, A.; Klose, F. Field dependence of the ferromagnetic/superconducting proximity effect in a YBCO/STO/LCMO multilayer. Nanoscale 2018, 10, 18995–19003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satapathy, D.K.; Uribe-Laverde, M.A.; Marozau, I.; Malik, V.K.; Das, S.; Wagner, T.; Marcelot, C.; Stahn, J.; Brück, S.; Rühm, A.; et al. Magnetic Proximity Effect in YBa2Cu3O7/La2/3Ca1/3MnO3 and YBa2Cu3O7/LaMnO3+δ Superlattices. Phys. Rev. Lett. 2012, 108, 197201. [Google Scholar] [CrossRef] [Green Version]
- Frano, A.; Blanco-Canosa, S.; Schierle, E.; Lu, Y.; Wu, M.; Bluschke, M.; Minola, M.; Christiani, G.; Habermeier, H.U.; Logvenov, G.; et al. Long-range charge-density-wave proximity effect at cuprate/manganate interfaces. Nat. Mater. 2016, 15, 831–834. [Google Scholar] [CrossRef] [Green Version]
- Kalcheim, Y.; Millo, O.; Di Bernardo, A.; Pal, A.; Robinson, J.W.A. Inverse proximity effect at superconductor-ferromagnet interfaces: Evidence for induced triplet pairing in the superconductor. Phys. Rev. B—Condens. Matter Mater. Phys. 2015, 92, 060504(R). [Google Scholar] [CrossRef] [Green Version]
- Banerjee, N.; Ouassou, J.A.; Zhu, Y.; Stelmashenko, N.A.; Linder, J.; Blamire, M.G. Controlling the superconducting transition by spin-orbit coupling. Phys. Rev. B 2018, 97, 184521. [Google Scholar] [CrossRef] [Green Version]
- Brisbois, J.; Motta, M.; Avila, J.I.; Shaw, G.; Devillers, T.; Dempsey, N.M.; Veerapandian, S.K.P.; Colson, P.; Vanderheyden, B.; Vanderbemden, P.; et al. Imprinting superconducting vortex footsteps in a magnetic layer. Sci. Rep. 2016, 6, 27159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aladyshkin, A.Y.; Silhanek, A.V.; Gillijns, W.; Moshchalkov, V.V. Nucleation of superconductivity and vortex matter in superconductor- ferromagnet hybrids. Supercond. Sci. Technol. 2009, 22, 053001. [Google Scholar] [CrossRef]
- Chien, T.Y.; Kourkoutis, L.F.; Chakhalian, J.; Gray, B.; Kareev, M.; Guisinger, N.P.; Muller, D.A.; Freeland, J.W. Visualizing short-range charge transfer at the interfaces between ferromagnetic and superconducting oxides. Nat. Commun. 2013, 4, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, J.; Soltan, S.; Habermeier, H.U. Magnetic pinning of flux lines in heterostructures of cuprates and manganites. Phys. Rev. B 2005, 72, 092502. [Google Scholar] [CrossRef]
- Di Bernardo, A.; Komori, S.; Livanas, G.; Divitini, G.; Gentile, P.; Cuoco, M.; Robinson, J.W.A. Nodal superconducting exchange coupling. Nat. Mater. 2019, 18, 1194–1200. [Google Scholar] [CrossRef]
- Soltan, S.; Albrecht, J.; Goering, E.; Schütz, G.; Mustafa, L.; Keimer, B.; Habermeier, H.U. Preparation of a ferromagnetic barrier in YBa2Cu3O7-δ thinner than the coherence length. J. Appl. Phys. 2015, 118, 223902. [Google Scholar] [CrossRef] [Green Version]
- Ionescu, A.M.; Simmendinger, J.; Bihler, M.; Miksch, C.; Fischer, P.; Soltan, S.; Schütz, G.; Albrecht, J. Soft-magnetic coatings as possible sensors for magnetic imaging of superconductors. Supercond. Sci. Technol. 2020, 33, 015002. [Google Scholar] [CrossRef]
- Alidoust, M.; Halterman, K. Half-metallic superconducting triplet spin multivalves. Phys. Rev. B 2018, 97, 064517. [Google Scholar] [CrossRef] [Green Version]
- Schultz, M.; Klein, L.; Reiner, J.W.; Beasley, M.R. Low-temperature magnetoresistance in untwinned CaRuO3 films. Phys. B Condens. Matter 2006, 378–380, 490–491. [Google Scholar] [CrossRef]
- Tian, H.Y.; Wang, J.; Wang, Y.; Qi, J.Q.; Wong, K.H.; Chan, H.L.W.; Choy, C.L. Highly c-axis oriented CaRuO3 thin films on LaAlO3 buffered Si(100) substrates by pulsed laser deposition. Phys. Status Solidi Appl. Res. 2004, 201, 101–104. [Google Scholar] [CrossRef]
- Ito, A.; Matsumoto, H.; Goto, T. Microstructure and Electrical Conductivity of Epitaxial CaRuO3 Thin Films Prepared on (001), (110) and (111) SrTiO3 Substrates by Laser Ablation. J. Ceram. Soc. Jpn. 2007, 115, 683–687. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, S.; Rana, R.; Kumar, S.; Pandey, P.; Singh, R.S.; Rana, D.S. Ferromagnetic CaRuO3. Sci. Rep. 2014, 4, 3877. [Google Scholar] [CrossRef] [Green Version]
- Nair, H.P.; Liu, Y.; Ruf, J.P.; Schreiber, N.J.; Shang, S.L.; Baek, D.J.; Goodge, B.H.; Kourkoutis, L.F.; Liu, Z.K.; Shen, K.M.; et al. Synthesis science of SrRuO3 and CaRuO3 epitaxial films with high residual resistivity ratios. APL Mater. 2018, 6, 046101. [Google Scholar] [CrossRef] [Green Version]
- Geiger, D.; Scheffler, M.; Dressel, M.; Schneider, M.; Gegenwart, P. Broadband microwave study of SrRuO3 and CaRuO3 thin films. J. Phys. Conf. Ser. 2012, 391, 012091. [Google Scholar] [CrossRef]
- Myers, K.E.; Char, K.; Colclough, M.S.; Geballe, T.H. Noise characteristics of YBa2Cu3O7-δ/CaRuO3/YBa2Cu3O7-δ Josephson junctions. Appl. Phys. Lett. 1994, 64, 788. [Google Scholar] [CrossRef]
- Lee, S.G.; Park, K.; Park, Y.K.; Park, J.C. High Tc superconductor-normal-superconductor step-edge junction dc SQUIDs with CaRuO3 as the normal metal. Appl. Phys. Lett. 1994, 64, 2028. [Google Scholar] [CrossRef]
- Shirako, Y.; Satsukawa, H.; Kojitani, H.; Katsumata, T.; Yoshida, M.; Inaguma, Y.; Hiraki, K.; Takahashi, T.; Yamaura, K.; Takayama-Muromachi, E.; et al. Magnetic properties of high-pressure phase of CaRuO3 with post-perovskite structure. J. Phys. Conf. Ser. 2010, 215, 012038. [Google Scholar] [CrossRef]
- Shirako, Y.; Satsukawa, H.; Wang, X.X.; Li, J.J.; Guo, Y.F.; Arai, M.; Yamaura, K.; Yoshida, M.; Kojitani, H.; Katsumata, T.; et al. Integer spin-chain antiferromagnetism of the 4d oxide CaRuO3 with post-perovskite structure. Phys. Rev. B 2011, 83, 174411. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Li, Z.; Tian, Z.; Luo, W.; Okamoto, S.; Yu, P. Emergent Ferromagnetism with Fermi-Liquid Behavior in Proton Intercalated CaRuO3. Phys. Rev. X 2021, 11, 021018. [Google Scholar] [CrossRef]
- Bradarić, I.M.; Matić, V.M.; Savić, I.; Rakočević, Z.; Popović, M.; Destraz, D.; Keller, H. Anomalous magnetic properties of CaRuO3 probed by AC and DC magnetic measurements and by low Ti impurity doping. Phys. Rev. B 2018, 98, 134436. [Google Scholar] [CrossRef] [Green Version]
- Longo, J.M.; Raccah, P.M.; Goodenough, J.B. Magnetic properties of SrRuO3 and CaRuO3. J. Appl. Phys. 1968, 39, 1327. [Google Scholar] [CrossRef]
- Chen, Y.B.; Zhou, J.; Wu, F.X.; Ji, W.J.; Zhang, S.T.; Chen, Y.F.; Zhu, Y.Y. Microstructure and ferromagnetic property in CaRuO3 thin films with pseudoheterostructure. Appl. Phys. Lett. 2010, 96, 182502. [Google Scholar] [CrossRef]
- Chen, P.F.; Chen, B.B.; Tan, X.L.; Xu, H.R.; Xuan, X.F.; Guo, Z.; Jin, F.; Wu, W.B. High-Tc ferromagnetic order in CaRuO3/La2/3Ca1/3MnO3 superlattices. Appl. Phys. Lett. 2013, 103, 262402. [Google Scholar] [CrossRef]
- He, T.; Cava, R.J. Disorder-induced ferromagnetism in CaRuO3. Phys. Rev. B—Condens. Matter Mater. Phys. 2001, 63, 172403. [Google Scholar] [CrossRef] [Green Version]
- Ivan, I.; Pasuk, I.; Crisan, A.; Sandu, V.; Onea, M.; Leca, A.; Cosar, C.; Burdusel, M. New superconductor/ferromagnet heterostructure formed by YBa2Cu3O7-x and CaRuO3. Supercond. Sci. Technol. 2021, 34, 115009. [Google Scholar] [CrossRef]
- Bean, C.P. Magnetization of hard superconductors. Phys. Rev. Lett. 1962, 8, 250–253. [Google Scholar] [CrossRef]
- Gyorgy, E.M.; Van Dover, R.B.; Jackson, K.A.; Schneemeyer, L.F.; Waszczak, J.V. Anisotropic critical currents in Ba2YCuO7 analyzed using an extended Bean model. Appl. Phys. Lett. 1989, 55, 283–285. [Google Scholar] [CrossRef]
- Yeshurun, Y.; Malozemoff, A.P.; Shaulov, A. Magnetic relaxation in high-temperature superconductors. Rev. Mod. Phys. 1996, 68, 911–949. [Google Scholar] [CrossRef] [Green Version]
- Feigelman, M.V.; Geshkenbein, V.B.; Larkin, A.I.; Vinokur, V.M. Theory of collective flux creep. Phys. Rev. Lett. 1989, 63, 2303–2306. [Google Scholar] [CrossRef] [PubMed]
- Abulafia, Y.; Shaulov, A.; Wolfus, Y.; Prozorov, R.; Burlachkov, L.; Yeshurun, Y.; Majer, D.; Zeldov, E.; Wühl, H.; Geshkenbein, V.B.; et al. Plastic vortex creep in YBa2Cu3O7-x crystals. Phys. Rev. Lett. 1996, 77, 1596–1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, W.; Mahajan, S.; Yoshida, Y.; Morishita, T.; Kumagai, M.; Yabuta, K. Influence of Crystal Strain on Superconductivity of a-Axis Oriented YBa2Cu3Ox Films. Jpn. J. Appl. Phys. 1994, 33, 5701. [Google Scholar] [CrossRef]
- Miu, L.; Mele, P.; Crisan, A.; Ionescu, A.; Miu, D. Evolution of vortex dynamics in YBa2Cu3O7 films with nanorods by adding nanoparticles. Phys. C Supercond. Appl. 2014, 500, 40–43. [Google Scholar] [CrossRef]
- Kuncser, V.; Miu, L. Size Effects in Nanostructures; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783662444788. [Google Scholar]
- Blatter, G.; Feigel’Man, M.V.; Geshkenbein, V.B.; Larkin, A.I.; Vinokur, V.M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 1994, 66, 1125–1388. [Google Scholar] [CrossRef]
- Ionescu, A.M.; Bihler, M.; Simmendinger, J.; Miksch, C.; Fischer, P.; Cristiani, G.; Rabinovich, K.S.; Schütz, G.; Albrecht, J. Transient increase of Tc and Jc in superconducting/metallic heterostructures. Mater. Chem. Phys. 2021, 263, 124390. [Google Scholar] [CrossRef]
- Albrecht, J.; Djupmyr, M.; Brück, S. Universal temperature scaling of flux line pinning in high-temperature superconducting thin films. J. Phys. Condens. Matter 2007, 19, 216211. [Google Scholar] [CrossRef] [Green Version]
- Djupmyr, M.; Soltan, S.; Habermeier, H.U.; Albrecht, J. Temperature-dependent critical currents in superconducting YBa2Cu3O7-δ and ferromagnetic La2/3Ca1/3MnO3 hybrid structures. Phys. Rev. B—Condens. Matter Mater. Phys. 2009, 80, 184507. [Google Scholar] [CrossRef]
- Stangl, A.; Palau, A.; Deutscher, G.; Obradors, X.; Puig, T. Ultra-high critical current densities of superconducting YBa2Cu3O7-δ thin films in the overdoped state. Sci. Rep. 2021, 11, 8176. [Google Scholar] [CrossRef]
- Prajapat, C.L.; Singh, S.; Bhattacharya, D.; Ravikumar, G.; Basu, S.; Mattauch, S.; Zheng, J.G.; Aoki, T.; Paul, A. Proximity effects across oxide-interfaces of superconductor-insulator-ferromagnet hybrid heterostructure. Sci. Rep. 2018, 8, 3732. [Google Scholar] [CrossRef] [PubMed]
YBCO-Layer | ||||
Sample | a (Å) Strain | b (Å) Strain | c (Å) Strain | |
YBCO Bulk a = 3.817 Å b = 3.883 Å c = 11.682 Å | I-a | 3.793 −0.63% | 3.834 −1.26% | 11.69 0.07% |
I-b | 3.845 0.74% | 3.905 0.57% | 11.657 −0.21% | |
II-a | 3.834 0.45% | 3.88 −0.08% | 11.73 0.41% | |
II-b | 3.857 1.04% | 3.88 −0.08% | 11.705 0.2% | |
III-a | 3.88 1.64% | 3.88 −0.08% | 11.697 0.13% | |
III-b | 3.861 1.14% | 3.88 −0.08% | 11.69 0.07% | |
CRO-Layer | ||||
Sample | a (Å) Strain | b (Å) Strain | c (Å) Strain | |
CROpc Bulk pc a = 3.840 Å | II-a | 3.826 −0.35% | 3.883 1.13% | 3.818 −0.57% |
II-b | 3.861 0.53% | 3.887 1.24% | 3.813 −0.7% | |
III-a | 3.88 1.03% | 3.876 0.93% | 3.813 −0.7% | |
III-b | 3.864 0.63% | 3.887 1.24% | 3.812 −0.73% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ionescu, A.M.; Ivan, I.; Locovei, C.; Onea, M.; Crisan, A.; Soltan, S.; Schütz, G.; Albrecht, J. Ferromagnetism and Superconductivity in CaRuO3/YBa2Cu3O7-δ Heterostructures. Materials 2022, 15, 2345. https://doi.org/10.3390/ma15072345
Ionescu AM, Ivan I, Locovei C, Onea M, Crisan A, Soltan S, Schütz G, Albrecht J. Ferromagnetism and Superconductivity in CaRuO3/YBa2Cu3O7-δ Heterostructures. Materials. 2022; 15(7):2345. https://doi.org/10.3390/ma15072345
Chicago/Turabian StyleIonescu, Alina Marinela, Ion Ivan, Claudiu Locovei, Melania Onea, Adrian Crisan, Soltan Soltan, Gisela Schütz, and Joachim Albrecht. 2022. "Ferromagnetism and Superconductivity in CaRuO3/YBa2Cu3O7-δ Heterostructures" Materials 15, no. 7: 2345. https://doi.org/10.3390/ma15072345