The Influence of Service Temperature and Thickness on the Tensile Properties of Thin T2 Copper Sheets
Abstract
:1. Introduction
2. Experiments
2.1. Materials and Samples
2.2. Uniaxial Static Load Tensile Test
3. Results
3.1. Typical Stress–Strain Curve of the Investigated T2 Copper Sheets
3.2. The Tensile Properties of the Investigated T2 Copper Sheets
4. Analysis and Discussion
4.1. The Sheet Thickness Effect on the Tensile Mechanical Properties of T2 Copper Sheets
4.1.1. The Influence of the Sheet Thickness on Tensile Strength
4.1.2. The Influence of the Sheet Thickness on Yield Strength
4.1.3. The Influence of the Sheet Thickness on Elongation
4.2. The Influence of Service Temperature on Tensile Properties of T2 Copper Sheet
4.2.1. The Influence of Service Temperature on Tensile Strength
4.2.2. The Influence of Service Temperature on Yield Strength
4.2.3. The Influence of Service Temperature on Elongation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Razali, A.R.; Qin, Y. A Review on Micro-manufacturing, Micro-forming and their Key Issues. Procedia Eng. 2013, 53, 665–672. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Kumar, P.; Xu, R.; Zhao, K.; Cheng, G.J. Ultrafast direct fabrication of flexible substrate-supported designer plasmonic nanoarrays. Nanoscale 2015, 8, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Ruprecht, R.; Gietzelt, T.; Müller, K.; Piotter, V.; Haußelt, J. Injection molding of microstructured components from plastics, metals and ceramics. Microsyst. Technol. 2002, 8, 351–358. [Google Scholar] [CrossRef]
- Fu, M.W.; Chan, W.L. A review on the state-of-the-art microforming technologies. Int. J. Adv. Manuf. 2013, 67, 2411–2437. [Google Scholar] [CrossRef]
- Guschlbauer, R.; Momeni, S.; Osmanlic, F.; Körner, C. Process development of 99.95% pure copper processed via selective electron beam melting and its mechanical and physical properties. Mater. Charact. 2018, 143, 163–170. [Google Scholar] [CrossRef]
- Guo, B.; Zhou, J.; Shan, D.B.; Wang, H.M. Size effects of yield strength of brass foil in tensile test. Acta Metall. Sin. 2008, 44, 419–422. Available online: https://www.ams.org.cn/CN/Y2008/V44/I4/419 (accessed on 10 February 2022).
- Geiger, M.; Kleiner, M.; Eckstein, R.; Tiesler, N.; Engel, U. Microforming. CIRP Ann. Manuf. Technol. 2001, 50, 445–462. [Google Scholar] [CrossRef]
- Janssen, P.; de Keijser, T.; Geers, M. An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness. Mater. Sci. Eng. A 2006, 419, 238–248. [Google Scholar] [CrossRef]
- Raulea, L.; Goijaerts, A.; Govaert, L.; Baaijens, F. Size effects in the processing of thin metal sheets. J. Mater. Process. Technol. 2001, 115, 44–48. [Google Scholar] [CrossRef]
- Saotome, Y.; Yasuda, K.; Kaga, H. Microdeep drawability of very thin sheet steels. J. Mater. Process. Technol. 2001, 113, 641–647. [Google Scholar] [CrossRef]
- Michel, J.; Picart, P. Size effects on the constitutive behaviour for brass in sheet metal forming. J. Mater. Process. Technol. 2003, 141, 439–446. [Google Scholar] [CrossRef]
- Wu, J.F.; Chen, W.; Zhang, L.; Ding, Y.; Lei, K. Study on Mechanical Property and Forming Limit of 304 Stainless Steel. J. Hot Working. Technol. 2016, 45, 127–130. [Google Scholar] [CrossRef]
- Wan, Y.M.; Chan, S.B.; Song, M.; Duo, Y.L.; Li, J.; Liu, X.H. Micro-scale effect of CP-copper ultrathin strip. Heat Treat. Met. 2018, 43, 96–100. [Google Scholar] [CrossRef]
- Zhang, S.J.; Gong, X.L.; Li, J.Q.; Zhou, C.; Yuan, N. Experimental Investigation into Mechanical Properties of Copper Sheet with Size Effects. J. S. China Univ. Technol. 2016, 44, 8–14. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2017&filename=HNLG201610003&uniplatform=NZKPT&v=toYHLlRKzV-TAwbeYXBYioami9SXvmj6hjA0lna3SZt5iQDM9y3rHgi-ohJN54n (accessed on 10 February 2022).
- Lee, H.-J.; Zhang, P.; Bravman, J.C. Study on the strength and elongation of free-standing Al beams for microelectromechanical systems applications. Appl. Phys. Lett. 2004, 84, 915–917. [Google Scholar] [CrossRef]
- Yu, D.; Spaepen, F. The yield strength of thin copper films on Kapton. J. Appl. Phys. 2004, 95, 2991–2997. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; Shen, Y.; Diehl, A.; Hagenah, H.; Engel, U.; Merklein, M. Size effect on springback behavior due to plastic strain gradient hardening in microbending process of pure aluminum foils. Mater. Sci. Eng. A 2010, 527, 4497–4504. [Google Scholar] [CrossRef]
- Li, H.-Z.; Dong, X.-H.; Shen, Y.; Zhou, R.; Diehl, A.; Hagenah, H.; Engel, U.; Merklein, M.; Cao, J. Analysis of microbending of CuZn37 brass foils based on strain gradient hardening models. J. Mater. Process. Technol. 2011, 212, 653–661. [Google Scholar] [CrossRef]
- Essoussi, H.; El Mouhri, S.; Ettaqi, S.; Essadiqi, E. Heat treatment effect on mechanical properties of AISI 304 austenitic stainless steel. Procedia Manuf. 2019, 32, 883–888. [Google Scholar] [CrossRef]
- Meng, B.; Fu, M. Size effect on deformation behavior and ductile fracture in microforming of pure copper sheets considering free surface roughening. Mater. Des. 2015, 83, 400–412. [Google Scholar] [CrossRef]
- Kori, P.; Vadavadagi, B.H.; Khatirkar, R.K. Hot deformation characteristics of ASS-304 austenitic stainless steel by tensile tests. Mater. Today Proc. 2020, 28, 1895–1898. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, H.; Wang, C.; Zhu, Q.; Chen, G. Effect of cryogenic temperature on the deformation mechanism of a thin sheet of pure copper at the mesoscale. Mater. Sci. Eng. A 2021, 822, 141714. [Google Scholar] [CrossRef]
- Zhou, J.; Guo, B.; Shan, D.B. The influence of size effects on tensile strength and elongation of copper. J. Mater. Sci. Technol. 2010, 18, 445–449. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2010&filename=CLKG201004002&uniplatform=NZKPT&v=5PUjSCoKT8qhtDwzFyn0w6p8p0Z5TDUNgep_1SOUxpa0j9HxindSuGE3LbSOERfu (accessed on 10 February 2022).
Cu | Bi | Sb | As | Fe | Pb | S | Others |
---|---|---|---|---|---|---|---|
99.95 | 0.0008 | 0.0002 | 0.0002 | 0.005 | 0.0003 | 0.005 | ≤0.1 |
Thickness | 20 °C | 100 °C | 150 °C | 200 °C | 250 °C |
---|---|---|---|---|---|
0.08 mm | 5 | / | 5 | / | 5 |
0.15 mm | 5 | / | 5 | / | 5 |
0.20 mm | 5 | 5 | 5 | 5 | 5 |
0.25 mm | 5 | / | 5 | / | 5 |
0.30 mm | 5 | / | 5 | / | 5 |
0.35 mm | 5 | / | 5 | / | 5 |
0.60 mm | 5 | 5 | 5 | 5 | 5 |
0.80 mm | 5 | / | 5 | / | 5 |
1.0 mm | 5 | 5 | 5 | 5 | 5 |
Temperature | 20 °C | 150 °C | 250 °C |
---|---|---|---|
y0 (MPa) | 576.9 | 596.5 | 641.3 |
A (MPa·mm) | 68.234 | 75.766 | 71.903 |
t0 (mm) | 0.183 | 0.176 | 0.179 |
ω (mm) | 0.211 | 0.235 | 0.248 |
R2 | 0.978 | 0.993 | 0.976 |
Temperature | 20 °C | 150 °C | 250 °C |
---|---|---|---|
y0 (MPa) | 552.529 | 518.342 | 515.921 |
A (MPa·mm) | 62.065 | 64.170 | 59.119 |
t0 (mm) | 0.182 | 0.176 | 0.175 |
ω (mm) | 0.186 | 0.180 | 0.175 |
R2 | 0.977 | 0.993 | 0.970 |
Temperature | 20 °C | 150 °C | 250 °C |
---|---|---|---|
y0 (%) | 23.694 | 25.004 | 32.179 |
a | 18.263 | 19.398 | 21.085 |
b | 0.006 | 0.006 | 0.004 |
R2 | 0.986 | 0.993 | 0.999 |
Thickness | a1 (MPa) | b1 (MPa·°C 1) | R2 |
---|---|---|---|
0.08 mm | 662.868 | 0.333 | 0.997 |
0.15 mm | 766.644 | 0.173 | 0.994 |
0.20 mm | 772.934/769.342 | 0.196/0.199 | 0.967/0.915 |
0.25 mm | 706.288 | 0.183 | 0.901 |
0.30 mm | 655.179 | 0.302 | 0.839 |
0.35 mm | 644.622 | 0.267 | 0.802 |
0.60mm | 589.037/586.375 | 0.241/0.265 | 0.801/0.816 |
0.80 mm | 565.441 | 0.297 | 0.957 |
1.0 mm | 561.055/563.204 | 0.309/0.316 | 0.971/0.954 |
Sheet Thickness | a2 (MPa) | b2 (MPa·°C 1) | R2 |
---|---|---|---|
0.08 mm | 640.440 | −0.063 | 0.983 |
0.15 mm | 751.085 | −0.169 | 0.989 |
0.20 mm | 761.909/762.673 | −0.182/−0.185 | 0.992/0.992 |
0.25 mm | 685.424 | −0.258 | 1.0 |
0.30 mm | 632.320 | −0.233 | 0.898 |
0.35 mm | 628.641 | −0.281 | 0.899 |
0.60 mm | 569.825/570.216 | −0.188/−0.194 | 0.923/0.933 |
0.80 mm | 550.897 | −0.168 | 0.928 |
1.0 mm | 545.389/543.607 | −0.152/−0.150 | 0.908/0.898 |
Thickness | a3 (×10−4) | b3 | c | R2 |
---|---|---|---|---|
0.08 mm | 1.497 | −0.018 | 12.602 | 1.0 |
0.15 mm | 1.946 | −0.025 | 16.151 | 1.0 |
0.20 mm | 2.616/2.475 | −0.034/−0.033 | 17.062/17.265 | 1.0/0.975 |
0.25 mm | 2.612 | −0.035 | 19.023 | 1.0 |
0.30 mm | 2.612 | −0.036 | 20.607 | 1.0 |
0.35 mm | 2.484 | −0.035 | 22.147 | 1.0 |
0.60 mm | 2.687/2.423 | −0.034/−0.025 | 23.632/23.121 | 1.0/0.936 |
0.80 mm | 2.656 | −0.033 | 23.813 | 1.0 |
1.0 mm | 2.695/2.231 | −0.034/−0.026 | 24.024/23.548 | 1.0/0.945 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Y.; Gou, R.; Yu, M.; Zhang, C.; Wang, N.; Xu, H. The Influence of Service Temperature and Thickness on the Tensile Properties of Thin T2 Copper Sheets. Materials 2022, 15, 2341. https://doi.org/10.3390/ma15072341
Ge Y, Gou R, Yu M, Zhang C, Wang N, Xu H. The Influence of Service Temperature and Thickness on the Tensile Properties of Thin T2 Copper Sheets. Materials. 2022; 15(7):2341. https://doi.org/10.3390/ma15072341
Chicago/Turabian StyleGe, Yebao, Ruibin Gou, Min Yu, Chunyu Zhang, Nian Wang, and Hao Xu. 2022. "The Influence of Service Temperature and Thickness on the Tensile Properties of Thin T2 Copper Sheets" Materials 15, no. 7: 2341. https://doi.org/10.3390/ma15072341
APA StyleGe, Y., Gou, R., Yu, M., Zhang, C., Wang, N., & Xu, H. (2022). The Influence of Service Temperature and Thickness on the Tensile Properties of Thin T2 Copper Sheets. Materials, 15(7), 2341. https://doi.org/10.3390/ma15072341