Low-Temperature-Processed High-Performance Pentacene OTFTs with Optimal Nd-Ti Oxynitride Mixture as Gate Dielectric
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gelinck, G.; Heremans, P.; Nomoto, K.; Anthopoulos, T.D. Organic transistors in optical displays and microelectronic applications. Adv. Mater. 2010, 22, 3778–3798. [Google Scholar] [CrossRef] [PubMed]
- Kraft, U.; Sejfic, M.; Kang, M.J.; Takimiya, K.; Zaki, T.; Letzkus, F.; Burghartz, J.N.; Weber, E.; Klauk, H. Flexible low-voltage organic complementary circuits: Finding the optimum combination of semiconductors and monolayer gate dielectrics. Adv. Mater. 2015, 27, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Smith, T.J.; Dickey, K.C.; Yoo, J.E.; Stevenson, K.J.; Loo, Y.L. High resolution characterization of pentacene/polyaniline interfaces in thin-film transistors. Adv. Funct. Mater. 2006, 16, 2409–2414. [Google Scholar] [CrossRef]
- Schon, J.H.; Batlogg, B. Trapping in organic field-effect transistors. J. Appl. Phys. 2001, 89, 336–341. [Google Scholar] [CrossRef]
- Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radik, W. High-mobility polymer gate dielectric pentacene thin film transistors. J. Appl. Phys. 2002, 92, 5259–5263. [Google Scholar] [CrossRef]
- Kumar, B.; Kaushik, B.K.; Negi, Y.S. Organic thin film transistors: Structures, models, materials, fabrication, and applications: A review. Polym. Rev. 2014, 54, 33–111. [Google Scholar] [CrossRef]
- Roh, J.; Kang, C.M.; Kwak, J.; Lee, C.; Jung, B.J. Overcoming tradeoff between mobility and bias stability in organic field-effect transistors according to the self-assembled monolayer chain lengths. Appl. Phys. Lett. 2014, 104, 173301. [Google Scholar] [CrossRef]
- Lu, Y.X.; Lee, W.H.; Lee, H.S.; Jang, Y.; Cho, K. Low-voltage organic transistors with titanium oxide/polystyrene bilayer dielectrics. Appl. Phys. Lett. 2009, 94, 113303. [Google Scholar] [CrossRef] [Green Version]
- Mistry, K.; Allen, C.; Auth, C.; Beattie, B.; Bergstrom, D.; Bost, M.; Brazier, M.; Buehler, M.; Cappellani, A.; Chau, R.; et al. A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. In Proceedings of the 2007 International Electron Device Meeting (IEDM), Washington, DC, USA, 10–12 December 2007; pp. 247–250. [Google Scholar]
- Xiong, K.; Robertson, J. Point defects in HfO2 high k gate oxide. Microelectron. Eng. 2005, 80, 408–411. [Google Scholar] [CrossRef]
- Kim, J.; Lim, S.H.; Kim, Y.S. Solution-based TiO2-polymer composite dielectric for low operating voltage OTFTs. J. Am. Chem. Soc. 2010, 132, 14721–14723. [Google Scholar] [CrossRef]
- Barbora, L.; Singh, R.; Shroti, N.; Verma, A. Synthesis and characterization of neodymium oxide modified nafion membrane for direct alcohol fuel cells. Mater. Chem. Phys. 2010, 122, 211–216. [Google Scholar] [CrossRef]
- Chun, J.; Reuvekamp, P.G.; Chen, D.; Lin, C.; Kremer, R.K. Promising high-k dielectric permittivity of pyrochlore-type crystals of Nd2Hf2O7. J. Mater. Chem. C 2015, 3, 491–494. [Google Scholar] [CrossRef]
- Lu, N.; Li, H.J.; Peterson, J.J.; Kwong, D.L. HfTiAlO dielectric as an alternative high-k gate dielectric for the next generation of complementary metal-oxide-semiconductor devices. Appl. Phys. Lett. 2007, 90, 082911. [Google Scholar] [CrossRef]
- Reddy, K.M.; Manorama, S.V.; Reddy, A.R. Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 2002, 78, 239–245. [Google Scholar] [CrossRef]
- Xu, H.X.; Xu, J.P.; Li, C.X.; Chan, C.J.; Lai, P.T. Impacts of Ti on electrical properties of Ge metal-oxide-semiconductor capacitors with ultrathin high-K LaTiON gate dielectric. Appl. Phys. A 2010, 99, 903–906. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.X.; Tang, W.M.; Han, C.Y.; Lai, P.T. High-performance pentacene organic thin-film transistor by using Nd2O3 gate dielectric doped with Nb. Phys. Status Solidi A 2018, 215, 1700609. [Google Scholar] [CrossRef]
- Han, C.Y.; Tang, W.M.; Lai, P.T. High-mobility pentacene organic thin-film transistor with LaxNb(1-x)Oy gate dielectric fabricated on vacuum tape. IEEE Trans. Electron. Devices 2017, 64, 1716–1722. [Google Scholar] [CrossRef]
- Voigt, M.; Pflaum, J.; Sokolowski, M. Growth morphologies and charge carrier mobilities of pentacene organic field effect transistors with RF sputterred aluminium oxide gate insulators on ITO glass. Phys. Status Solidi A 2008, 205, 449–460. [Google Scholar] [CrossRef]
- Al-Sehemi, A.G.; Al-Melfi, M.A.M.; Irfan, A. Electronic, optical, and charge transfer properties of donor–bridge–acceptor hydrazone sensitizers. J. Struct. Chem. 2013, 24, 499–506. [Google Scholar] [CrossRef]
- Lim, K.H.; Lee, J.; Huh, J.E.; Park, J.; Lee, J.H.; Lee, S.E.; Kim, Y.S. A systematic study on effects of precursors and solvents for optimization of solution-processed oxide semiconductor thin-film transistors. J. Mater. Chem. C 2017, 5, 7768–7776. [Google Scholar] [CrossRef]
- Ma, Y.X.; Han, C.Y.; Tang, W.M.; Lai, P.T. High-performance pentacene OTFT by incorporating Ti in LaON gate dielectric. Appl. Phys. Lett. 2017, 111, 3501. [Google Scholar] [CrossRef]
- Bajus, P.S.; Illas, F.; Pacchioni, G.; Parmigiani, F. Mechanisms responsible for chemical shifts of core-level binding energies and their relationship to chemical bonding. J. Electron. Spectrosc. Relat. Phenom. 1999, 100, 215–236. [Google Scholar] [CrossRef]
- Verlaak, S.; Arkhipov, V.; Heremans, P. Modeling of Transport In Polycrystalline Organic Semiconductor Films. Appl. Phys. Lett. 2003, 82, 745. [Google Scholar] [CrossRef]
- Horowitz, G. Organic Field-Effect Transistors. Adv. Mater. 1998, 10, 365–377. [Google Scholar] [CrossRef]
- Salahuddin, S.; Datta, S. Can the subthreshold swing in a classical FET be lowered below 60 mV/decade. In Proceedings of the 2018 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 1–5 December 2018; pp. 1–4. [Google Scholar]
- Kalb, W.L.; Batlogg, B. Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods. Phys. Rev. B 2010, 81, 035327. [Google Scholar] [CrossRef] [Green Version]
- Fritz, S.E.; Kelley, T.W.; Frisbie, C.D. Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer. J. Phys. Chem. B 2005, 109, 10574–10577. [Google Scholar] [CrossRef]
- Shtein, M.; Mapel, J.; Benziger, J.B.; Forrest, S.R. Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin film transistors. App. Phys. Lett. 2002, 81, 268–270. [Google Scholar] [CrossRef]
- Chen, J.; Tee, C.K.; Shtein, M.; Anthony, J.; Martin, D.C. Grain-boundary-limited charge transport in solution-processed 6, 13 bis(tri-isopropylsilylethynyl) pentacene thin film transistors. J. Appl. Phys. 2008, 103, 114513. [Google Scholar] [CrossRef]
- Godlewski, S.; Szymonski, M. Adsorption and self-assembly of large polycyclic molecules on the surfaces of TiO2 single crystals. Int. J. Mol. Sci. 2013, 14, 2946–2966. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.X.; Liu, L.N.; Tang, W.M.; Lai, P.T. Improved performance of pentacene OTFT by incorporating Ti in NdON gate dielectric. In Proceedings of the 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC), Hsinchu, Taiwan, 18–20 October 2017. [Google Scholar]
- Ma, Y.X.; Tang, W.M.; Lai, P.T. Reduced screening of remote phonon scattering in thin-film transistors caused by gate-electrode/gate-dielectric interlayer. Appl. Phys. Lett. 2020, 117, 141601. [Google Scholar] [CrossRef]
- Ma, Y.X.; Tang, W.M.; Lai, P.T. Effects of a gate-electrode/gate-dielectric interlayer on carrier mobility for pentacene organic thin-film transistors. IEEE Electron. Device Lett. 2018, 39, 1516–1519. [Google Scholar] [CrossRef]
Sample | A | B | C | D |
---|---|---|---|---|
RF Sputtering Power of Nd | 45 W | |||
DC Sputtering Power of Ti | 0 W | 10 W | 20 W | 30 W |
μ (cm2/V·s) | 0.15 | 0.20 | 1.70 | 0.40 |
VT (V) | −0.81 | −0.75 | −0.71 | 2.1 |
hysteresis (V) | −0.36 | −0.23 | 0.33 | 1.0 |
SS (V/dec) | 0.25 | 0.16 | 0.30 | 3.1 |
Nt (cm−2eV−1) | 2.6 × 1012 | 1.5 × 1012 | 4.1 × 1012 | 6.1 × 1013 |
on/off ratio | 2.0 × 103 | 1.0 × 104 | 6.5 × 103 | 3.7 × 101 |
Vfb (V) | −0.65 | −0.28 | 0.19 | 0.58 |
Qox | 2.7 × 1011 | −3.7 × 1010 | −5.5 × 1011 | −1.1 × 1012 |
Cox (μF/cm2) | 0.132 | 0.146 | 0.171 | 0.191 |
k value | 7.7 | 8.6 | 9.7 | 10.2 |
tox (nm) | 51.4 | 52.1 | 50.3 | 47.5 |
RMS dielectric roughness (nm) | 7.98 | 2.21 | 0.36 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.-X.; Lai, P.-T.; Tang, W.-M. Low-Temperature-Processed High-Performance Pentacene OTFTs with Optimal Nd-Ti Oxynitride Mixture as Gate Dielectric. Materials 2022, 15, 2255. https://doi.org/10.3390/ma15062255
Ma Y-X, Lai P-T, Tang W-M. Low-Temperature-Processed High-Performance Pentacene OTFTs with Optimal Nd-Ti Oxynitride Mixture as Gate Dielectric. Materials. 2022; 15(6):2255. https://doi.org/10.3390/ma15062255
Chicago/Turabian StyleMa, Yuan-Xiao, Pui-To Lai, and Wing-Man Tang. 2022. "Low-Temperature-Processed High-Performance Pentacene OTFTs with Optimal Nd-Ti Oxynitride Mixture as Gate Dielectric" Materials 15, no. 6: 2255. https://doi.org/10.3390/ma15062255
APA StyleMa, Y.-X., Lai, P.-T., & Tang, W.-M. (2022). Low-Temperature-Processed High-Performance Pentacene OTFTs with Optimal Nd-Ti Oxynitride Mixture as Gate Dielectric. Materials, 15(6), 2255. https://doi.org/10.3390/ma15062255