Powder Reuse in Laser-Based Powder Bed Fusion of Ti6Al4V—Changes in Mechanical Properties during a Powder Top-Up Regime
Abstract
:1. Introduction
1.1. Additively Manufactured Titanium Alloys
1.2. Relationships between Mechanical Properties
1.3. Aims and Objectives
- To evaluate the effect of increasing interstitial elements in the Ti6Al4V powder on the Vickers hardness of the selected built components.
- To analyze the impact of interstitial elements within the reused powder on the tensile properties.
- To establish the strength–hardness relationship by adapting the existing empirical model and to compare the model from other literature.
2. Materials and Methods
2.1. Feedstock Powder
2.2. Laser-Based Powder Bed Fusion (L-PBF) Parameters
2.3. L-PBF Build Layout
2.4. Postprocessing
2.5. Hardness Testing and Etching
2.6. Tensile Testing
3. Results
3.1. Microstructure
3.2. Hardness
3.3. Tensile Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutton, A.T.; Kriewall, C.S.; Leu, M.C.; Newkirk, J.W.; Brown, B. Characterization of laser spatter and condensate generated during the selective laser melting of 304L stainless steel powder. Addit. Manuf. 2020, 31, 100904. [Google Scholar] [CrossRef]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; Van Humbeeck, J.; Kruth, J.-P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010, 58, 3303–3312. [Google Scholar] [CrossRef]
- Shipley, H.; McDonnell, D.; Culleton, M.; Coull, R.; Lupoi, R.; O’Donnell, G.; Trimble, D. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review. Int. J. Mach. Tools Manuf. 2018, 128, 1–20. [Google Scholar] [CrossRef]
- Sutton, A.T.; Kriewall, C.S.; Leu, M.C.; Newkirk, J.W.J.V.; Prototyping, P. Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual Phys. Prototyp. 2017, 12, 3–29. [Google Scholar] [CrossRef]
- Harkin, R.; Wu, H.; Nikam, S.; Quinn, J.; McFadden, S. Reuse of Grade 23 Ti6Al4V Powder during the Laser-Based Powder Bed Fusion Process. Metals 2020, 10, 1700. [Google Scholar] [CrossRef]
- Harkin, R.; Wu, H.; Nikam, S.; Quinn, J.; McFadden, S. Analysis of Spatter Removal by Sieving during a Powder-Bed Fusion Manufacturing Campaign in Grade 23 Titanium Alloy. Metals 2021, 11, 399. [Google Scholar] [CrossRef]
- Yan, M.; Dargusch, M.; Ebel, T.; Qian, M. A transmission electron microscopy and three-dimensional atom probe study of the oxygen-induced fine microstructural features in as-sintered Ti–6Al–4V and their impacts on ductility. Acta Mater. 2014, 68, 196–206. [Google Scholar] [CrossRef]
- Velasco-Castro, M.; Hernández-Nava, E.; Figueroa, I.; Todd, I.; Goodall, R. The effect of oxygen pickup during selective laser melting on the microstructure and mechanical properties of Ti–6Al–4V lattices. Heliyon 2019, 5, e02813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- Eshawish, N.; Malinov, S.; Sha, W.; Walls, P. Microstructure and Mechanical Properties of Ti-6Al-4V Manufactured by Selective Laser Melting after Stress Relieving, Hot Isostatic Pressing Treatment, and Post-Heat Treatment. J. Mater. Eng. Perform. 2021, 30, 5290–5296. [Google Scholar] [CrossRef]
- Fousová, M.; Vojtěch, D.; Kubásek, J.; Jablonská, E.; Fojt, J. Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process. J. Mech. Behav. Biomed. Mater. 2017, 69, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Brandt, M.; Sun, S.; Elambasseril, J.; Liu, Q.; Latham, K.; Xia, K.; Qian, M. Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition. Acta Mater. 2015, 85, 74–84. [Google Scholar] [CrossRef]
- Finlay, W.L.; Snyder, A.J. Effects of three interstitial solutes (nitrogen, oxygen, and carbon) on the mechanical properties of high-purity, alpha titanium. JOM 1950, 2, 277–286. [Google Scholar] [CrossRef]
- Oh, J.-M.; Lee, B.-G.; Cho, S.-W.; Lee, S.-W.; Choi, G.-S.; Lim, J.-W. Oxygen effects on the mechanical properties and lattice strain of Ti and Ti-6Al-4V. Met. Mater. Int. 2011, 17, 733–736. [Google Scholar] [CrossRef]
- Rousseau, J.N.; Bois-Brochu, A.; Blais, C. Effect of oxygen content in new and reused powder on microstructural and mechanical properties of Ti6Al4V parts produced by directed energy deposition. Addit. Manuf. 2018, 23, 197–205. [Google Scholar] [CrossRef]
- Carroll, B.E.; Palmer, T.A.; Beese, A. Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 2015, 87, 309–320. [Google Scholar] [CrossRef]
- Tabor, D. The Hardness of Metals; Oxford University Press: Oxford, UK, 1951; ISBN 0198507763. [Google Scholar]
- Hickey, C.F., Jr. Tensile Strength-Hardness Correlation for Titanium Alloys; Watertown Arsenal Laboratories: Watertown, MA, USA, 1961. [Google Scholar]
- Keist, J.; Palmer, T.A. Development of strength-hardness relationships in additively manufactured titanium alloys. Mater. Sci. Eng. A 2017, 693, 214–224. [Google Scholar] [CrossRef] [Green Version]
- ASTM E1409-13; Standard Test Method for Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by Inert Gas Fusion. ASTM International: West Conshohocken, PA, USA, 2013; Reapproved 2021.
- ASTM E1447-09; Standard Test Method for Determination of Hydrogen in Titanium and Titanium Alloys by Inert Gas Fusion Thermal Conductivity/Infrared Detection Method. ASTM International: West Conshohocken, PA, USA, 2001; Reapproved 2016.
- BS EN ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. British Standards Institute: London, UK, 2017.
- ASTM F3001-14; Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) with Powder Bed Fusion. ASTM International: West Conshohocken, PA, USA, 2012; Reapproved 2021.
- Skalon, M.; Meier, B.; Leitner, T.; Arneitz, S.; Amancio-Filho, S.; Sommitsch, C. Reuse of Ti6Al4V Powder and Its Impact on Surface Tension, Melt Pool Behavior and Mechanical Properties of Additively Manufactured Components. Materials 2021, 14, 1251. [Google Scholar] [CrossRef] [PubMed]
- Soundarapandiyan, G.; Johnston, C.; Khan, R.H.; Leung, C.L.A.; Lee, P.D.; Hernández-Nava, E.; Chen, B.; Fitzpatrick, M.E. The effects of powder reuse on the mechanical response of electron beam additively manufactured Ti6Al4V parts. Addit. Manuf. 2021, 46, 102101. [Google Scholar] [CrossRef]
Build Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
O (wt.%) | 0.095 | 0.099 | 0.111 | 0.114 | 0.117 | 0.123 | 0.127 | 0.130 | 0.126 |
N (wt.%) | 0.014 | 0.015 | 0.0159 | 0.0173 | 0.0175 | 0.02 | 0.02 | 0.02 | 0.019 |
H (wt.%) | 0.0020 | 0.0018 | 0.0023 | 0.0024 | 0.0023 | 0.0002 | 0.0002 | 0.0001 | 0.0004 |
Build Cycle | 2 | 3 | 5 | 7 | 9 |
---|---|---|---|---|---|
Vickers hardness (HV1) | 367.8 ± 1.5 | 366.4 ± 1.6 | 371.9 ± 1.3 | 379.0 ± 1.1 | 381.9 ± 1.0 |
Tensile strength (MPa) | 947.6 ± 135.4 | 852.8 ± 108.7 | 964.6 ± 109.1 | 1078.4 ± 20.1 | 1030.7 ± 44.0 |
Relationship | Intercept | Slope | R-Square | p-Value |
---|---|---|---|---|
Hardness vs. oxygen level | 313.6 | 515.4 | 0.760 | 0.054 |
Tensile strength vs. oxygen level | 377 | 5150 | 0.481 | 0.194 |
Reduction in area vs. oxygen level | 35.0 | −258.1 | 0.55 | 0.023 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harkin, R.; Wu, H.; Nikam, S.; Yin, S.; Lupoi, R.; McKay, W.; Walls, P.; Quinn, J.; McFadden, S. Powder Reuse in Laser-Based Powder Bed Fusion of Ti6Al4V—Changes in Mechanical Properties during a Powder Top-Up Regime. Materials 2022, 15, 2238. https://doi.org/10.3390/ma15062238
Harkin R, Wu H, Nikam S, Yin S, Lupoi R, McKay W, Walls P, Quinn J, McFadden S. Powder Reuse in Laser-Based Powder Bed Fusion of Ti6Al4V—Changes in Mechanical Properties during a Powder Top-Up Regime. Materials. 2022; 15(6):2238. https://doi.org/10.3390/ma15062238
Chicago/Turabian StyleHarkin, Ryan, Hao Wu, Sagar Nikam, Shuo Yin, Rocco Lupoi, Wilson McKay, Patrick Walls, Justin Quinn, and Shaun McFadden. 2022. "Powder Reuse in Laser-Based Powder Bed Fusion of Ti6Al4V—Changes in Mechanical Properties during a Powder Top-Up Regime" Materials 15, no. 6: 2238. https://doi.org/10.3390/ma15062238
APA StyleHarkin, R., Wu, H., Nikam, S., Yin, S., Lupoi, R., McKay, W., Walls, P., Quinn, J., & McFadden, S. (2022). Powder Reuse in Laser-Based Powder Bed Fusion of Ti6Al4V—Changes in Mechanical Properties during a Powder Top-Up Regime. Materials, 15(6), 2238. https://doi.org/10.3390/ma15062238