Molecular Dynamics Simulation of Sintering Densification of Multi-Scale Silver Layer
Abstract
:1. Introduction
2. Method
2.1. Methodology of Simulation
2.1.1. Molecular Dynamics Interatomic Potential
2.1.2. Random Algorithm
2.2. Semi In-Situ Observation Sintering of Multi-Scale Silver
3. Result and Discussion
3.1. Sintering Densification of Silver Particles with Different Proportions
3.2. Evolution of Sintering Silver Neck Size
3.3. Result of Semi In-Situ Observation
4. Conclusions
- With the same conditions such as sintering temperature and time, adding small silver particles to large silver particles is beneficial to reduce porosity.
- During the initial sintering stage, the of the small silver particle pair is faster than the large silver particle pair due to higher surface diffusion under heating. Moreover, the of a small particle pair is higher than that of a large particle pair at the same temperature due to the high surface diffusion energy. Using this mechanism improves the radius of the bonding neck and shortens the sintering time by adding small silver particles to large particles.
- In the multiscale silver sintering experiment, nano-silver as the medium of micron silver bonding could effectively shorten the sintering time and reduce the effective sintering temperature to improve the packaging yield.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, P.; Yan, H.; Li, W.; Yang, D. Void Eliminating Process of Sintered-Silver Die Attachment in Anaerobic-Sintering Atmospheres. In Proceedings of the 21st International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, China, 12–15 August 2020. [Google Scholar]
- Zhang, H.; Wang, W.; Bai, H.; Zou, G.; Liu, L.; Peng, P.; Guo, W. Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications. J. Alloys Compd. 2018, 774, 487–494. [Google Scholar]
- Ren, H.; Zou, G.; Jia, Q.; Deng, Z.; Du, C.; Wang, W.; Liu, L. Thermal stress reduction strategy for high-temperature power electronics with Ag sintering. Microelectron. Reliab. 2021, 1247, 114379. [Google Scholar] [CrossRef]
- Yan, H.; Mei, Y.H.; Li, X.; Ma, C.; Lu, G.Q. A Multichip Phase-Leg IGBT Module Using Nanosilver Paste by Pressureless Sintering in Formic Acid Atmosphere. IEEE Trans. Electron Dev. 2018, 65, 4499–4505. [Google Scholar] [CrossRef]
- Chua, S.T.; Siow, K.S. Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300 °C. J. Alloys Compd. 2016, 687, 486–498. [Google Scholar] [CrossRef]
- Gao, R.; Shen, Y.A.; Li, J.; He, S.; Nishikawa, H. Mechanical and microstructural enhancements of Ag microparticle-sintered joint by ultrasonic vibration. J. Mater. Sci. Mater. Electron. 2020, 31, 21711–21722. [Google Scholar] [CrossRef]
- Liu, W.; An, R.; Wang, C.; Zheng, Z.; Tian, Y.; Xu, R.; Wang, Z. Recent Progress in Rapid Sintering of Nanosilver for Electronics Applications. Micromachines 2018, 934, 346. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, S.; Zhang, L.; Zhao, X.; Duan, F.; Chen, H. Brief Review of Nanosilver Sintering: Manufacturing and Reliability. J. Electron. Mater. 2021, 50, 5483–5498. [Google Scholar] [CrossRef]
- Chen, C.T.; Suganuma, K. Microstructure and mechanical properties of sintered Ag particles with flake and spherical shape from nano to micro size. Mater. Des. 2019, 162, 311–321. [Google Scholar] [CrossRef]
- Yan, H.; Liang, P.; Mei, Y.; Feng, Z. Brief review of silver sinter-bonding processing for packaging high-temperature power devices. Chin. J. Electr. Eng. 2020, 6, 25–34. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Wang, L. Effect of sintering pressure on the porosity and the shear strength of the pressure-assisted silver sintering bonding. IEEE Trans. Device Mater. Reliab. 2018, 18, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Mei, Y.H.; Wang, M.; Li, X.; Lu, G.Q. Pressureless sintering multi-scale Ag paste by a commercial vacuum reflowing furnace for massive production of power modules. J. Mater. Sci. Mater. Electron. 2019, 30, 9634–9641. [Google Scholar] [CrossRef]
- McCoppin, J.; Reitz, T.L.; Miller, R.; Vijwani, H.; Mukhopadhyay, S.; Young, D. Low Temperature Consolidation of Micro/Nanosilver Die-Attach Preforms. J. Electron. Mater. 2014, 43, 3379–3388. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Yang, S.; Li, Y.; Huang, J. Multiscale simulation study of laser sintering of inkjet-printed silver nanoparticle inks. Int. J. Heat Mass Transf. 2020, 159, 120110. [Google Scholar] [CrossRef]
- Lin, Y.C.; Liu, X.; Chou, K.W.; Tsai, E.H.; Zhao, C.; Holler, M.; Diaz, A.; Petrash, S.; Chen-Wiegart, Y.C. Unveiling 3D Morphology of Multiscale Micro-Nanosilver Sintering for Advanced Electronics Manufacturing by Ptychographic X-ray Nanotomography. Adv. Eng. Mater. 2020, 22, 1901250. [Google Scholar]
- Badar, M.; Shamsi, S.; Ahmed, J.A. Molecular Dynamics Simulations: Concept, Methods, and Applications: Molecular Dynamics Simulations: Concept, Methods, and Applications; Springer Nature: Washington, DC, USA, 2020; pp. 1–32. [Google Scholar]
- Daw, M.S.; Foiles, S.M.; Baskes, M.I. The embedded-atom method: A review of theory and applications. Mater. Sci. Rep. 1993, 9, 251–310. [Google Scholar] [CrossRef] [Green Version]
- Kwak, J.H.; Ko, M.S.; Kim, K.H. The Effect of Crystal Orientation on Damping Capacity in Rolled AZ31 Magnesium Alloy. Mater. Sci. Forum 2018, 941, 1127–1131. [Google Scholar]
- Han, Q.N.; Rui, S.; Qiu, W. Effect of crystal orientation on the indentation behaviour of Ni-based single crystal superalloy. Mater. Sci. Eng. 2018, 773, 138893. [Google Scholar] [CrossRef]
- Grigoriu, M. Models for space-time random functions. Probabilistic Eng. Mech. 2016, 43, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zeng, Z.; Weinberger, R.C.; Zhang, Z.; Zhang, Z.; Mao, S.X. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Nat. Mater. 2015, 14, 594–600. [Google Scholar] [CrossRef]
- Yuan, W.T.; Zhang, D.W.; Ou, Y. Direct In Situ TEM Visualization and Insight into the Facet-Dependent Sintering Behaviors of Gold on TiO2. Angew. Chem. 2018, 130, 17069–17073. [Google Scholar]
- Li, G.; Fang, K.; Chen, Y.; Ou, Y.; Mao, S.; Yuan, W.; Wang, Y.; Yang, H.; Zhang, Z. Unveiling the Gas-dependent Sintering Behavior of Au-TiO2 Catalysts via Environmental Transmission Electron Microscopy. J. Catal. 2020, 388, 84–90. [Google Scholar] [CrossRef]
- Siow, K.S.; Chua, S.T. Thermal ageing studies of sintered micron-silver (Ag) joint as a lead-free bonding material. Met. Mater. Int. 2020, 26, 1404–1414. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, X.; Zhao, Z.; Wu, Z. Driving force evolution in solid-state sintering with coupling multiphysical fields. Ceram. Int. 2020, 46, 11584–11592. [Google Scholar]
Group | 10 Å | 30 Å | 50 Å |
---|---|---|---|
A | 0 | 0 | 1 |
B | 0 | 1 | 1 |
C | 1 | 1 | 1 |
Group | 10 Å | 30 Å | 50 Å |
---|---|---|---|
A | 0 | 0 | 1 |
B | 0 | 3 | 1 |
C | 25 | 3 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, P.; Pan, Z.; Tang, L.; Zhang, G.; Yang, D.; He, S.; Yan, H. Molecular Dynamics Simulation of Sintering Densification of Multi-Scale Silver Layer. Materials 2022, 15, 2232. https://doi.org/10.3390/ma15062232
Liang P, Pan Z, Tang L, Zhang G, Yang D, He S, Yan H. Molecular Dynamics Simulation of Sintering Densification of Multi-Scale Silver Layer. Materials. 2022; 15(6):2232. https://doi.org/10.3390/ma15062232
Chicago/Turabian StyleLiang, Peijie, Zhiliang Pan, Liang Tang, Guoqi Zhang, Daoguo Yang, Siliang He, and Haidong Yan. 2022. "Molecular Dynamics Simulation of Sintering Densification of Multi-Scale Silver Layer" Materials 15, no. 6: 2232. https://doi.org/10.3390/ma15062232
APA StyleLiang, P., Pan, Z., Tang, L., Zhang, G., Yang, D., He, S., & Yan, H. (2022). Molecular Dynamics Simulation of Sintering Densification of Multi-Scale Silver Layer. Materials, 15(6), 2232. https://doi.org/10.3390/ma15062232