Manufacturing of Open-Cell Aluminium Foams: Comparing the Sponge Replication Technique and Its Combination with the Freezing Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Characterisation
3. Results
3.1. Comparison of the RP and RP/FP Aluminium Foams
3.2. Manufacturing of the RP/FP Aluminium Foams with Different Cell Size
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bortolozzi, J.P.; Banús, E.D.; Milt, V.G.; Gutierrez, L.B.; Ulla, M.A. The significance of passivation treatments on AISI 314 foam pieces to be used as substrates for catalytic applications. Appl. Surf. Sci. 2010, 257, 495–502. [Google Scholar] [CrossRef]
- Gancarczyk, A.; Sindera, K.; Iwaniszyn, M.; Piatek, M.; Macek, W.; Jodłowski, P.J.; Wroński, S.; Sitarz, M.; Łojewska, J.; Kołodziej, A. Metal foams as novel catalyst support in environmental processes. Catalysts 2019, 9, 587. [Google Scholar] [CrossRef]
- Aguirre, A.; Chandra, V.; Peters, E.A.J.F.; Kuipers, J.A.M.; Neira D’Angelo, M.F. Open-cell foams as catalysts support: A systematic analysis of the mass transfer limitations. Chem. Eng. J. 2020, 393, 124656. [Google Scholar] [CrossRef]
- Betke, U.; Lieb, A. Micro-Macroporous Composite Materials–Preparation Techniques and Selected Applications: A Review. Adv. Eng. Mater. 2018, 20, 1800252. [Google Scholar] [CrossRef]
- Singh, S.; Bhatnagar, N. A survey of fabrication and application of metallic foams (1925–2017). J. Porous Mater. 2018, 25, 537–554. [Google Scholar] [CrossRef]
- Deville, S. Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 2008, 10, 155–169. [Google Scholar] [CrossRef]
- Chino, Y.; Dunand, D.C. Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 2008, 56, 105–113. [Google Scholar] [CrossRef]
- Trueba, P.; Beltrán, A.M.; Bayo, J.M.; Rodríguez-ortiz, J.A.; Larios, D.F.; Alonso, E.; Dunand, D.C.; Torres, Y. Porous titanium cylinders obtained by the freeze-casting technique: Influence of process parameters on porosity and mechanical behavior. Metals 2020, 10, 188. [Google Scholar] [CrossRef]
- Wang, Q.B.; Hou, Z.P.; Zhang, S.Z.; Feng, H.; Zhang, C.J.; Han, J.C.; Zhang, W.G.; Zhao, R.T. Pore structure and compression behavior of porous TiAl alloys by freeze casting. Vacuum 2020, 175, 109254. [Google Scholar] [CrossRef]
- Lloreda-Jurado, P.J.; Wilke, S.K.; Scotti, K.; Paúl-Escolano, A.; Dunand, D.C.; Sepúlveda, R. Structure-processing relationships of freeze-cast iron foams fabricated with various solidification rates and post-casting heat treatment. J. Mater. Res. 2020, 35, 2587–2596. [Google Scholar] [CrossRef]
- Um, T.; Wilke, S.K.; Choe, H.; Dunand, D.C. Effects of pore morphology on the cyclical oxidation/reduction of iron foams created via camphene-based freeze casting. J. Alloys Compd. 2020, 845, 156278. [Google Scholar] [CrossRef]
- Plunk, A.A.; Dunand, D.C. Iron foams created by directional freeze casting of iron oxide, reduction and sintering. Mater. Lett. 2017, 191, 112–115. [Google Scholar] [CrossRef]
- Park, H.; Choi, M.; Choe, H.; Dunand, D.C. Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores. Mater. Sci. Eng. A 2017, 679, 435–445. [Google Scholar] [CrossRef]
- Cuba Ramos, A.I.; Dunand, D.C. Preparation and characterization of directionally freeze-cast copper foams. Metals 2012, 2, 265–273. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Luo, B.; Zhang, L.; Lai, Y. Porous Cu foams with oriented pore structure by freeze casting. Mater. Lett. 2017, 205, 249–252. [Google Scholar] [CrossRef]
- Ran, H.; Feng, P.; Liu, Z.; Wang, X.; Niu, J.; Zhang, H. Complex-shaped porous Cu bodies fabricated by freeze-casting and vacuum sintering. Metals 2015, 5, 1821–1828. [Google Scholar] [CrossRef]
- Nam, K.; Lee, S.; Hong, K.; Kang, J.S.; Jo, H.; Park, H.; Sung, Y.E.; Jenei, P.; Gubicza, J.; Kwon, K.; et al. Freeze Casting is a Facile Method to Create Solid Solution Alloy Foams: Cu–Ni Alloy Foams via Freeze Casting. Adv. Eng. Mater. 2019, 21, 1801265. [Google Scholar] [CrossRef]
- Lee, S.; Tam, J.; Li, W.; Yu, B.; Cho, H.J.; Samei, J.; Wilkinson, D.S.; Choe, H.; Erb, U. Multi-scale morphological characterization of Ni foams with directional pores. Mater. Charact. 2019, 158, 109939. [Google Scholar] [CrossRef]
- Jo, H.; Kim, M.J.; Choi, H.; Sung, Y.-E.; Choe, H.; Dunand, D.C. Morphological Study of Directionally Freeze-Cast Nickel Foams. Metall. Mater. Trans. E 2016, 3, 46–54. [Google Scholar] [CrossRef]
- Young Yang, T.; Young Kim, W.; Young Yoon, S.; Chae Park, H. Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method. J. Phys. Chem. Solids 2010, 71, 436–439. [Google Scholar] [CrossRef]
- Schelm, K.; Fey, T.; Dammler, K.; Betke, U.; Scheffler, M. Hierarchical-Porous Ceramic Foams by a Combination of Replica and Freeze Technique. Adv. Eng. Mater. 2019, 21, 1801362. [Google Scholar] [CrossRef]
- Dammler, K.; Schelm, K.; Betke, U.; Fey, T.; Scheffler, M. Open-cellular alumina foams with hierarchical strut porosity by ice templating: A thickening agent study. Materials 2021, 14, 1060. [Google Scholar] [CrossRef] [PubMed]
- Sutygina, A.; Betke, U.; Scheffler, M. Hierarchical-Porous Copper Foams by a Combination of Sponge Replication and Freezing Techniques. Adv. Eng. Mater. 2021, 24, 2001516. [Google Scholar] [CrossRef]
- Sutygina, A.; Betke, U.; Scheffler, M. Open-Cell Aluminum Foams by the Sponge Replication Technique: A Starting Powder Particle Study. Adv. Eng. Mater. 2020, 22, 1901194. [Google Scholar] [CrossRef]
- Sutygina, A.; Betke, U.; Scheffler, M. Open-cell aluminum foams by the sponge replication technique. Materials 2019, 12, 3840. [Google Scholar] [CrossRef] [PubMed]
- DIN. Hochleistungskeramik; Monolithische Keramik; Allgemeine und Strukturelle Eigenschaften; Teil 2: Bestimmung von Dichte und Porosität; DIN EN 623–2:1993–11; Beuth Verlag: Berlin, Germany, 1993. (In German) [Google Scholar]
- Betke, U.; Dalicho, S.; Rannabauer, S.; Lieb, A.; Scheffler, F.; Scheffler, M. Impact of Slurry Composition on Properties of Cellular Alumina: A Computed Tomographic Study. Adv. Eng. Mater. 2017, 19, 1700138. [Google Scholar] [CrossRef]
- Coelho, A.A. Topas Academic V5; Coelho Software: Brisbane, Australia, 2012. [Google Scholar]
- Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 13, 293–297. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Ashby, M.F. The properties of foams and lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 15–30. [Google Scholar] [CrossRef]
- Tikhonov, L.V.; Kononenko, V.A.; Prokopenko, G.I. Structure and Properties of Metals and Alloys; Naukova Dumka: Kiev, Ukraine, 1986; p. 567. (In Russian) [Google Scholar]
- He, Y. Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations. Thermochim. Acta 2005, 436, 122–129. [Google Scholar] [CrossRef]
- Eucken, A. Die Wärmeleitfähigkeit Feuerfester Stoffe. Ihre Berechnung aus der Wärmeleitfähigkeit der Bestandteile; VDI-Verlag: Berlin, Germany, 1932. [Google Scholar]
- Khezrzadeh, O.; Mirzaee, O.; Emadoddin, E.; Linul, E. Anisotropic compressive behavior of metallic foams under extreme temperature conditions. Materials 2020, 13, 2329. [Google Scholar] [CrossRef]
- Kavei, G. Mechanical Properties of Aluminum Foam Fabricated by Aluminum Powders with Na or Carbamide Replica. AASCIT J. Mater. 2015, 1, 22–30. [Google Scholar]
- Mao, H.; Shen, P.; Yang, G.; Zhao, L.; Qiu, X.; Wang, H.; Jiang, Q. 3D highly oriented metal foam: A competitive self-supporting anode for high-performance lithium-ion batteries. J. Mater. Sci. 2020, 55, 11–13. [Google Scholar] [CrossRef]
- Bekoz, N.; Oktay, E. Mechanical properties of low alloy steel foams: Dependency on porosity and pore size. Mater. Sci. Eng. A 2013, 576, 82–90. [Google Scholar] [CrossRef]
- Zou, L.; Chen, F.; Wang, H.; Shen, Q.; Lavernia, E.J.; Zhang, L. Influence of Porosity on Mechanical Behavior of Porous Cu Fabricated via De-Alloying of Cu–Fe Alloy. Met. Mater. Int. 2019, 25, 83–93. [Google Scholar] [CrossRef]
- Zou, L.; Chen, F.; Chen, X.; Lin, Y.; Shen, Q.; Lavernia, E.J.; Zhang, L. Fabrication and mechanical behavior of porous Cu via chemical de-alloying of Cu25Fe75 alloys. J. Alloys Compd. 2016, 689, 6–14. [Google Scholar] [CrossRef]
- Farkas, D.; Caro, A.; Bringa, E.; Crowson, D. Mechanical response of nanoporous gold. Acta Mater. 2013, 61, 3249–3256. [Google Scholar] [CrossRef]
- Kaya, A.C.; Fleck, C. Deformation behavior of open-cell stainless steel foams. Mater. Sci. Eng. A 2014, 615, 447–456. [Google Scholar] [CrossRef]
- Hakamada, M.; Asao, Y.; Kuromura, T.; Chen, Y.; Kusuda, H.; Mabuchi, M. Density dependence of the compressive properties of porous copper over a wide density range. Acta Mater. 2007, 55, 2291–2299. [Google Scholar] [CrossRef]
- Yamada, Y.; Wen, C.; Shimojima, K.; Hosokawa, H.; Chino, Y.; Mabuchi, M. Compressive deformation characteristics of open-cell Mg alloys with controlled cell structure. Mater. Trans. 2002, 43, 1298–1305. [Google Scholar] [CrossRef][Green Version]
- Touloukian, Y.S.; Powell, R.W.; Ho, C.Y.; Klemens, P.G. Thermophysical Properties of Matter—The TPRC Data Series; IFI/Plenum: New York, NY, USA, 1973. [Google Scholar] [CrossRef]
- Smith, D.S.; Fayette, S.; Grandjean, S.; Martin, C.; Telle, R.; Tonnessen, T. Thermal resistance of grain boundaries in alumina ceramics and refractories. J. Am. Ceram. Soc. 2003, 86, 105–111. [Google Scholar] [CrossRef]
- Dong, H.; Wen, B.; Melnik, R. Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials. Sci. Rep. 2014, 4, 7037. [Google Scholar] [CrossRef] [PubMed]
Sample | Total Porosity a, % | Cell Porosity b, % | Strut Porosity c, % |
---|---|---|---|
RP foam | 86.6 ± 0.7 | 80.9 ± 1.5 | 37.6 ± 2.7 |
RP/FP foam | 86.6 ± 1.1 | 73.5 ± 2.5 | 53.8 ± 3.4 |
Sample | Volumetric Shrinkage, % | Total Porosity a, % | Cell Porosity b, % | Strut Porosity c, % |
---|---|---|---|---|
10 ppi | 57.6 ± 2.8 | 86.9 ± 0.9 | 76.8 ± 2.1 | 47.3 ± 2.7 |
20 ppi | 56.1 ± 3.7 | 86.6 ± 1.1 | 73.5 ± 2.5 | 53.8 ± 3.4 |
30 ppi | 56.4 ± 1.4 | 86.5 ± 0.6 | 68.6 ± 4.1 | 59.8 ± 4.5 |
Sample | Comp. Yield Strength, MPa | Absorbed Energy, MJ·m−3 | λf, W·m−1K−1 | λs, W·m−1K−1 |
---|---|---|---|---|
10 ppi | 0.44 ± 0.18 | 0.13 | 2.18 ± 0.05 | 34.6 |
20 ppi | 0.49 ± 0.13 | 0.15 | 2.32 ± 0.05 | 32.1 |
30 ppi | 0.72 ± 0.19 | 0.29 | 2.97 ± 0.18 | 34.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutygina, A.; Betke, U.; Scheffler, M. Manufacturing of Open-Cell Aluminium Foams: Comparing the Sponge Replication Technique and Its Combination with the Freezing Method. Materials 2022, 15, 2147. https://doi.org/10.3390/ma15062147
Sutygina A, Betke U, Scheffler M. Manufacturing of Open-Cell Aluminium Foams: Comparing the Sponge Replication Technique and Its Combination with the Freezing Method. Materials. 2022; 15(6):2147. https://doi.org/10.3390/ma15062147
Chicago/Turabian StyleSutygina, Alina, Ulf Betke, and Michael Scheffler. 2022. "Manufacturing of Open-Cell Aluminium Foams: Comparing the Sponge Replication Technique and Its Combination with the Freezing Method" Materials 15, no. 6: 2147. https://doi.org/10.3390/ma15062147
APA StyleSutygina, A., Betke, U., & Scheffler, M. (2022). Manufacturing of Open-Cell Aluminium Foams: Comparing the Sponge Replication Technique and Its Combination with the Freezing Method. Materials, 15(6), 2147. https://doi.org/10.3390/ma15062147