# A Frequency-Adjustable Tuning Fork Electromagnetic Energy Harvester

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Design and Working Principle

#### 2.1. The Structure Design

#### 2.2. Electromechanical Coupling Dynamics Model

## 3. Simulation and Experiment

_{0}.

## 4. Power Supply Experiment for Electrical Appliances

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Elvin, N.G.; Elvin, A.A. An experimentally validated electromagnetic energy harvester. J. Sound Vib.
**2011**, 10, 2314–2324. [Google Scholar] [CrossRef] - Foisal, A.; Hong, C.; Chung, G.S. Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever. Sens. Actuators A Phys.
**2012**, 182, 106–113. [Google Scholar] [CrossRef] - Zhang, Y.; Zheng, R.; Shimono, K.; Kaizuka, T.; Nakano, K. Effectiveness Testing of a Piezoelectric Energy Harvester for an Automobile Wheel Using Stochastic Resonance. Sensors
**2016**, 10, 1727. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Wang, X.; Chen, C.; Wang, N.; San, H.; Yu, Y.; Halvorsen, E.; Chen, X. A frequency and bandwidth tunable piezoelectric vibration energy harvester using multiple nonlinear techniques. Appl. Energy
**2017**, 190, 368–375. [Google Scholar] [CrossRef] - Liu, F.R.; Zhang, W.M.; Zhao, L.C.; Zou, H.X.; Tan, T.; Peng, Z.K.; Meng, G. Performance enhancement of wind energy harvester utilizing wake flow induced by double upstream flat-plates. Appl. Energy
**2020**, 257, 114034. [Google Scholar] [CrossRef] - Febbo, M.; Machado, S.P.; Gatti, C.D.; Ramirez, J.M. An out-of-plane rotational energy harvesting system for low frequency environments. Energy Convers. Manag.
**2017**, 152, 166–175. [Google Scholar] [CrossRef] - Johar, M.A.; Kang, J.H.; Hassan, M.A.; Ryu, S.W. A scalable, flexible and transparent GaN based heterojunction piezoelectric nanogenerator for bending, air-flow and vibration energy harvesting. Appl. Energy
**2018**, 222, 781–789. [Google Scholar] [CrossRef] - Sun, Y.; Gao, X.; Wang, H.; Chen, Z.; Yang, Z. A wideband ultrasonic energy harvester using 1–3 piezoelectric composites with non-uniform thickness. Appl. Phys. Lett.
**2018**, 4, 043903. [Google Scholar] [CrossRef] - Wang, Y.; Wang, L.; Cheng, T.; Song, Z.; Qin, F. Sealed piezoelectric energy harvester driven by hyperbaric air load. Appl. Phys. Lett.
**2016**, 3, 033902. [Google Scholar] [CrossRef] - Iqbal, M.; Nauman, M.M.; Khan, F.U.; Abas, E.; Cheok, Q.; Aissa, B. Nonlinear multi-mode electromagnetic insole energy harvester for human-powered body monitoring sensors: Design, modeling, and characterization. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
**2021**, 22, 6415–6426. [Google Scholar] [CrossRef] - Wei, C.; Jing, X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renew. Sustain. Energy Rev.
**2017**, 74, 1–18. [Google Scholar] [CrossRef] - Halim, M.A.; Rantz, R.; Zhang, Q.; Gu, L.; Yang, K.; Roundy, S.J.A.E. An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion. Appl. Energy
**2018**, 217, 66–74. [Google Scholar] [CrossRef] - Wu, X.; Li, G.; Lee, D.W. A novel energy conversion method based on hydrogel material for self-powered sensor system applications. Appl. Energy
**2016**, 173, 103–110. [Google Scholar] [CrossRef] - Rasel, M.; Park, J.Y. A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application. Appl. Energy
**2017**, 206, 150–158. [Google Scholar] [CrossRef] - Pondrom, P.; Sessler, G.M.; Boes, J.; Melz, T. Compact electret energy harvester with high power output. Appl. Phys. Lett.
**2016**, 109, 1457. [Google Scholar] [CrossRef] - Zhang, S.L.; Xu, M.; Zhang, C.; Wang, Y.C.; Zou, H.; He, X.; Wang, Z.; Wang, Z.L. Rationally Designed Sea Snake Structure Based Triboelectric Nanogenerators for Effectively and Efficiently Harvesting Ocean Wave Energy with Minimized Water Screening Effect. Nano Energy
**2018**, 48, 421–429. [Google Scholar] [CrossRef] - Siddique, A.R.M.; Mahmud, S.; Van Heyst, B. A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energy Convers. Manag.
**2015**, 106, 728–747. [Google Scholar] [CrossRef] - Jiang, X.Y.; Zou, H.X.; Zhang, W.M. Design and analysis of a multi-step piezoelectric energy harvester using buckled beam driven by magnetic excitation. Energy Convers. Manag.
**2017**, 145, 129–137. [Google Scholar] [CrossRef] - Dai, X.; Wen, Y.; Li, P.; Yang, J.; Li, M. Energy harvesting from mechanical vibrations using multiple magnetostrictive/piezoelectric composite transducers. Sens. Actuators A Phys.
**2011**, 166, 94–101. [Google Scholar] [CrossRef] - Zhou, Z.; Qin, W.; Zhu, P. Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester. Sens. Actuators A Phys.
**2016**, 243, 151–158. [Google Scholar] [CrossRef] [Green Version] - Toyabur, R.M.; Salauddin, M.; Park, J.Y. Design and Experiment of Piezoelectric Multimodal Energy Harvester for Low Frequency Vibration. Ceram. Int.
**2017**, 43, S675–S681. [Google Scholar] [CrossRef] - Wu, Y.; Qiu, J.; Zhou, S.; Ji, H.; Chen, Y.; Li, S. A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Appl. Energy
**2018**, 231, 600–614. [Google Scholar] [CrossRef] - Arrieta, A.F.; Hagedorn, P.; Erturk, A.; Inman, D.J. A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett.
**2010**, 10, 174103. [Google Scholar] [CrossRef] [Green Version] - Fu, H.; Yeatman, E.M. A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion. Energy
**2017**, 125, 152–161. [Google Scholar] [CrossRef] [Green Version] - Halim, M.A.; Cho, H.; Park, J.Y. Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester. Energy Convers. Manag.
**2015**, 106, 393–404. [Google Scholar] [CrossRef] - Pillatsch, P.; Yeatman, E.M.; Holmes, A.S. A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sens. Actuators A Phys.
**2014**, 206, 178–185. [Google Scholar] [CrossRef] - Zhang, H.; Jiang, S.; He, X. Impact-based piezoelectric energy harvester for multidimensional, low-level, broadband, and low-frequency vibrations. Appl. Phys. Lett.
**2017**, 22, 223902. [Google Scholar] [CrossRef] - Wang, Y.J.; Chen, C.D.; Sung, C.K. Design of a frequency-adjusting device for harvesting energy from a rotating wheel. Sens. Actuators A Phys.
**2010**, 159, 196–203. [Google Scholar] [CrossRef] - Wu, Q.; Gao, S.; Jin, L.; Zhang, X.; Yin, Z.; Wang, C. A tuning fork frequency up-conversion energy harvester. Sensors
**2021**, 21, 7285. [Google Scholar] [CrossRef] [PubMed] - Li, P.; Xu, N.; Gao, C. A Multi-Mechanisms Composite Frequency Up-Conversion Energy Harvester. Int. J. Precis. Eng. Manuf.
**2020**, 21, 1781–1788. [Google Scholar] [CrossRef] - Dallago, E.; Marchesi, M.; Venchi, G. Analytical Model of a Vibrating Electromagnetic Harvester Considering Nonlinear Effects. IEEE Trans. Power Electron.
**2010**, 25, 1989–1997. [Google Scholar] [CrossRef]

**Figure 3.**Schematic diagram of the movement process of the electromagnetic tuning fork energy harvester. (

**a**) Impact, (

**b**) maximum deformation, (

**c**) moment of separation after impact and (

**d**) vibration after separation.

**Figure 8.**(

**a**) The calculated voltage waveform and (

**b**) the measured instantaneous voltage waveform; ((

**a**,

**b**) are obtained under the condition that L

_{0}= 3.5 cm, impact clearance is 1.0 cm, and acceleration is 0.5 g) (

**c**,

**d**) are experimental results (L

_{0}is 3.0 cm and 2.5 cm, respectively, the spacing is 1.0 cm, and the external load resistance is 25 Ω).

**Figure 9.**The simulated voltage under various impact gaps (L

_{0}is the length of the tuning fork handle). (

**a**–

**c**) are three sweep curves under certain L

_{0}conditions; (

**d**) is the change in frequency and peak voltage generated by adjusting L

_{0}.

**Figure 11.**The voltage and power delivered to the different loads ((

**a**) d = 0.0 cm; (

**b**) d = 0.5 cm; (

**c**) d = 1.0 cm) when the length of the tuning fork handle is 3.5 cm.

**Figure 13.**A tiny flashlight LED powered by the tuning fork energy harvester. (

**a**) When indoor lighting is on; (

**b**) when the indoor light is turned off.

**Table 1.**Material properties and structural parameters of the adjustable frequency tuning fork electromagnetic energy harvester.

Parameter | Value |
---|---|

Diameter of magnet (NdFeB) | 17 mm |

Thickness of magnet (NdFeB) | 10 mm |

Remanent (Br) | 1.2 T |

Coil (copper) number of turns | 500 |

Outer diameter of coil (copper) | 24 mm |

Inner diameter of coil | 20 mm |

Young’s modulus of beryllium bronze (Ya) | 133 GPa |

Size of the handle (l_{0} × b_{0} × h_{0}) | 35~25 mm × 8 mm × 0.6 mm |

Size of the arm (l_{a} × b_{a} × h_{a}) | 30 mm × 16 mm × 0.5 mm |

The radius of the arc (R) | 10 mm |

Stiffness coefficient of the arm (k) | 1420 N/m |

Stiffness coefficient of the handle (k_{a}) | 65 N/m |

$\mathrm{Damping}\mathrm{ratio}\left(\varsigma \right)$ | 0.015 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wu, Q.; Gao, S.; Jin, L.; Guo, S.; Yin, Z.; Fu, H.
A Frequency-Adjustable Tuning Fork Electromagnetic Energy Harvester. *Materials* **2022**, *15*, 2108.
https://doi.org/10.3390/ma15062108

**AMA Style**

Wu Q, Gao S, Jin L, Guo S, Yin Z, Fu H.
A Frequency-Adjustable Tuning Fork Electromagnetic Energy Harvester. *Materials*. 2022; 15(6):2108.
https://doi.org/10.3390/ma15062108

**Chicago/Turabian Style**

Wu, Qinghe, Shiqiao Gao, Lei Jin, Shengkai Guo, Zuozong Yin, and He Fu.
2022. "A Frequency-Adjustable Tuning Fork Electromagnetic Energy Harvester" *Materials* 15, no. 6: 2108.
https://doi.org/10.3390/ma15062108