Effect of Cu Content on the Precipitation Behaviors, Mechanical and Corrosion Properties of As-Cast Ti-Cu Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure
3.2. Ti2Cu Precipitation
3.3. Mechanical Properties
3.4. Electrochemical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, T.-Y.; Zhu, Z.-H.; Zhang, S.; Min, X.-H.; Dong, C. Design for Ti-Al-V-Mo-Nb alloys for laser additive manufacturing based on a cluster model and on their microstructure and properties. China Foundry 2021, 18, 424–432. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New Developments of Ti-Based Alloys for Biomedical Applications. Materials 2014, 7, 1709–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.-Z.; Fu, B.-G.; Dong, T.-S.; Liu, J.-H.; Song, Y.-J.; Zhao, X.-B.; Li, G.-L. Microstructure and dry sliding wear behavior of as-cast TiCp/Ti-1100-0.5Nb titanium matrix composite at elevated temperatures. China Foundry 2020, 17, 455–463. [Google Scholar] [CrossRef]
- Liu, H.; Tang, Y.; Zhang, S.; Liu, H.; Wang, Z.; Li, Y.; Wang, X.; Ren, L.; Yang, K.; Qin, L. Anti-infection mechanism of a novel dental implant made of titanium-copper (TiCu) alloy and its mechanism associated with oral microbiology. Bioact. Mater. 2021, 8, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Javadhesari, S.M.; Alipour, S.; Akbarpour, M. Biocompatibility, osseointegration, antibacterial and mechanical properties of nanocrystalline Ti-Cu alloy as a new orthopedic material. Colloids Surf. B Biointerfaces 2020, 189, 110889. [Google Scholar] [CrossRef]
- Liu, X.; Chen, S.; Tsoi, J.K.; Matinlinna, J.P. Binary titanium alloys as dental implant materials—A review. Regen. Biomater. 2017, 4, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Zhang, E.; Wang, X.; Chen, M.; Hou, B. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application. Mater. Sci. Eng. C 2016, 69, 1210–1221. [Google Scholar] [CrossRef]
- Liu, R.; Tang, Y.; Zeng, L.; Zhao, Y.; Ma, Z.; Sun, Z.; Xiang, L.; Ren, L.; Yang, K. In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application. Dent. Mater. 2018, 34, 1112–1126. [Google Scholar] [CrossRef]
- Zhang, E.L.; Li, F.B.; Wang, H.Y.; Liu, J.; Wang, C.M.; Li, M.Q.; Yang, K. A new antibacterial titanium-copper sintered alloy: Preparation and antibacterial property. Mater. Sci. Eng. C 2013, 33, 4280–4287. [Google Scholar] [CrossRef]
- Tsao, L.-C. Effect of Heat Treatment Conditions on the Mechanical Properties and Machinability of Ti15SnxCu Alloys. Mater. Res. 2020, 23, 20190574. [Google Scholar] [CrossRef]
- Campo, K.; Lopes, E.; Parrish, C.; Caram, R. Rapid quenching of semisolid Ti-Cu alloys: Insights into globular microstructure formation and coarsening. Acta Mater. 2017, 139, 86–95. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, J.; Yang, Z.; Zhao, Q.; Chen, Y.; Zhao, Y. The Effect of Copper Content on the Mechanical and Tribological Properties of Hypo-, Hyper- and Eutectoid Ti-Cu Alloys. Materials 2020, 13, 3411. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, F.; Liu, C.; Wang, H.; Ren, B.; Yang, K.; Zhang, E. Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Mater. Sci. Eng. C 2014, 35, 392–400. [Google Scholar] [CrossRef]
- Osório, W.R.; Cremasco, A.; Andrade, P.N.; Garcia, A.; Caram, R. Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications. Electrochim. Acta 2010, 55, 759–770. [Google Scholar] [CrossRef]
- Dridi, A.; Riahi, K.Z.; Somrani, S. Mechanism of apatite formation on a poorly crystallized calcium phosphate in a simulated body fluid (SBF) at 37 °C. J. Phys. Chem. Solids 2021, 156, 110122. [Google Scholar] [CrossRef]
- Yao, X.; Sun, Q.; Xiao, L.; Sun, J. Effect of Ti2Cu precipitates on mechanical behavior of Ti–2.5Cu alloy subjected to different heat treatments. J. Alloys Compd. 2009, 484, 196–202. [Google Scholar] [CrossRef]
- Donthula, H.; Vishwanadh, B.; Alam, T.; Borkar, T.; Contieri, R.; Caram, R.; Banerjee, R.; Tewari, R.; Dey, G.; Banerjee, S. Morphological evolution of transformation products and eutectoid transformation(s) in a hyper-eutectoid Ti-12 at% Cu alloy. Acta Mater. 2019, 168, 63–75. [Google Scholar] [CrossRef]
- Sun, Q.; Yu, Z.; Zhu, R.; Gu, H. Mechanical behavior and deformation mechanisms of Ti–2.5Cu alloy reinforced by nano-scale precipitates at 293 and 77 K. Mater. Sci. Eng. A 2004, 364, 159–165. [Google Scholar] [CrossRef]
- Fu, B.; Wang, H.; Zou, C.; Wei, Z. The influence of Zr content on microstructure and precipitation of silicide in as-cast near α titanium alloys. Mater. Charact. 2015, 99, 17–24. [Google Scholar] [CrossRef]
- Williams, J.C.; Taggart, R.; Polonis, D.H. An electron microscopy study of modes of intermetallic precipitation in Ti-Cu alloys. Met. Mater. Trans. A 1971, 2, 1139–1148. [Google Scholar] [CrossRef]
- Kikuchi, M.; Takahashi, M.; Okuno, O. Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys. Dent. Mater. 2006, 22, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Gudić, S.; Vrsalović, L.; Kvrgić, D.; Nagode, A. Electrochemical Behaviour of Ti and Ti-6Al-4V Alloy in Phosphate Buffered Saline Solution. Materials 2021, 14, 7495. [Google Scholar] [CrossRef] [PubMed]
- Yetim, T. Corrosion Behavior of Ag-doped TiO2 Coatings on Commercially Pure Titanium in Simulated Body Fluid Solution. J. Bionic Eng. 2016, 13, 397–405. [Google Scholar] [CrossRef]
- Bao, M.; Liu, Y.; Wang, X.; Yang, L.; Li, S.; Ren, J.; Qin, G.; Zhang, E. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment. Bioact. Mater. 2018, 3, 28–38. [Google Scholar] [CrossRef]
- Siddiqui, M.A.; Ullah, I.; Kolawole, S.K.; Peng, C.; Wang, J.; Ren, L.; Yang, K.; Macdonald, D.D. Study the existing form of copper (p-type oxide/segregation) and its release mechanism from the passive film of Ti-7Cu alloy. Corros. Sci. 2021, 190, 109693. [Google Scholar] [CrossRef]
- Socorro-Perdomo, P.P.; Florido-Suárez, N.R.; Mirza-Rosca, J.C.; Saceleanu, M.V. EIS Characterization of Ti Alloys in Relation to Alloying Additions of Ta. Materials 2022, 15, 476. [Google Scholar] [CrossRef]
- Singh, A.; Singh, B.P.; Wani, M.R.; Kumar, D.; Singh, J.K.; Singh, V. Effect of anodization on corrosion behaviour and biocompatibility of Cp-titanium in simulated body fluid. Bull. Mater. Sci. 2013, 36, 931–937. [Google Scholar] [CrossRef] [Green Version]
- Pina, V.G.; Amigó, V.; Muñoz, A.I. Microstructural, electrochemical and tribo-electrochemical characterization of titanium-copper biomedical alloys. Corros. Sci. 2016, 109, 115–125. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Sun, Z.; Wang, H.; Ren, L.; Yang, K. Optimization of mechanical property, antibacterial property and corrosion resistance of Ti-Cu alloy for dental implant. J. Mater. Sci. Technol. 2019, 35, 2336–2344. [Google Scholar] [CrossRef]
- Zhang, E.; Ren, J.; Li, S.; Yang, L.; Qin, G. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti–Cu alloys. Biomed. Mater. 2016, 11, 065001. [Google Scholar] [CrossRef] [PubMed]
Composition | Concentration | Composition | Concentration |
---|---|---|---|
NaCl | 8.035 | MgCl2·6H2O | 0.311 |
NaHCO3 | 0.355 | CaCl2·2H2O | 0.386 |
KCl | 0.225 | Na2SO4 | 0.072 |
K2HPO4·3H2O | 0.231 |
Point | Ti | Cu |
---|---|---|
A | 77.32 | 22.68 |
B | 73.10 | 26.90 |
C | 82.31 | 17.69 |
D | 66.59 | 33.41 |
Position | Ti | Cu |
---|---|---|
Area 1 | 76.15 | 23.85 |
Area 2 | 98.61 | 1.39 |
Area 3 | 67.32 | 32.68 |
Area 4 | 66.33 | 33.67 |
Area 5 | 68.17 | 31.83 |
Area 6 | 98.67 | 1.33 |
Alloy | YS (MPa) | UTS (MPa) | Strain (%) | HV | Young’s Modulus (GPa) |
---|---|---|---|---|---|
Ti-4Cu | 612.2 ± 1.3 | 718.5 ± 6.9 | 6.7 ± 0.4 | 283 ± 5 | 103.2 |
Ti-7Cu | 669.1 ± 0.1 | 801.2 ± 14.4 | 5.2 ± 1.9 | 304 ± 16 | 112.7 |
Ti-10Cu | 749.5 ± 2.2 | 902.7 ± 25.2 | 2.6 ± 0.6 | 329 ± 2 | 122.7 |
Specimen | Ecorr (VSCE) | icorr (μA/cm2) |
---|---|---|
Ti-4Cu | −0.2480 | 0.043 |
Ti-7Cu | −0.2243 | 0.413 |
Ti-10Cu | −0.1951 | 0.276 |
Specimen | Rs Ω·cm2 | Rct MΩ·cm2 | CPE | |
---|---|---|---|---|
Y0 μF/cm2 | n | |||
Ti-4Cu | 24.5 | 0.537 | 48.8 | 0.708 |
Ti-7Cu | 20.8 | 0.0528 | 51.6 | 0.723 |
Ti-10Cu | 23.4 | 0.110 | 36.4 | 0.765 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Fu, B.; Wang, Y.; Dong, T.; Li, J.; Li, G.; Zhao, X.; Liu, J.; Zhang, G. Effect of Cu Content on the Precipitation Behaviors, Mechanical and Corrosion Properties of As-Cast Ti-Cu Alloys. Materials 2022, 15, 1696. https://doi.org/10.3390/ma15051696
Wang Z, Fu B, Wang Y, Dong T, Li J, Li G, Zhao X, Liu J, Zhang G. Effect of Cu Content on the Precipitation Behaviors, Mechanical and Corrosion Properties of As-Cast Ti-Cu Alloys. Materials. 2022; 15(5):1696. https://doi.org/10.3390/ma15051696
Chicago/Turabian StyleWang, Zhe, Binguo Fu, Yufeng Wang, Tianshun Dong, Jingkun Li, Guolu Li, Xuebo Zhao, Jinhai Liu, and Guixian Zhang. 2022. "Effect of Cu Content on the Precipitation Behaviors, Mechanical and Corrosion Properties of As-Cast Ti-Cu Alloys" Materials 15, no. 5: 1696. https://doi.org/10.3390/ma15051696
APA StyleWang, Z., Fu, B., Wang, Y., Dong, T., Li, J., Li, G., Zhao, X., Liu, J., & Zhang, G. (2022). Effect of Cu Content on the Precipitation Behaviors, Mechanical and Corrosion Properties of As-Cast Ti-Cu Alloys. Materials, 15(5), 1696. https://doi.org/10.3390/ma15051696