Aging-Dependent Changes in Mechanical Properties of the New Generation of Bulk-Fill Composites
Abstract
:1. Introduction
- There is no difference in the flexural strength, flexural modulus, and Weibull parameters among tested materials for the same exposure times to water and/or ethanol;
- There is no difference in the flexural strength, flexural modulus, and Weibull parameters for the same material and different exposure times to water and/or ethanol;
- There is no difference in degree of conversion among tested materials nor between two measuring depths (0 mm and 2 mm);
- There is no difference in water sorption and solubility among bulk-fill composites.
2. Materials and Methods
2.1. Materials
2.2. Testing Methods
- Three-point bending test according to ISO 4049 (flexural strength, flexural modulus, and Weibull analysis; 1 day, 30 days, 30 days + ethanol);
- Degree of conversion (30 days after light curing);
- Water sorption and solubility (up to 90 days).
2.2.1. Specimens for Three-Point Bending Test and Degree of Conversion
- 1 day (n = 20);
- 30 days (n = 20);
- 30 days + ethanol (n = 20)—after 30 days in saline, specimens were dried and immediately immersed in 70% ethanol for 3 days.
2.2.2. Three-Point Bending Test
2.2.3. Degree of Conversion
2.2.4. Water Sorption and Solubility
2.3. Statistical Analysis
3. Results
3.1. Mechanical Properties
3.2. Degree of Conversion
3.3. Water Sorption and Solubility
4. Discussion
4.1. Mechanical Properties
4.2. Degree of Conversion
4.3. Water Sorption and Solubility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Marovic, D.; Panduric, V.; Tarle, Z.; Ristic, M.; Sariri, K.; Demoli, N.; Klaric, E.; Jankovic, B.; Prskalo, K. Degree of conversion and microhardness of dental composite resin materials. J. Mol. Struct. 2013, 1044, 299–302. [Google Scholar] [CrossRef]
- Par, M.; Repusic, I.; Skenderovic, H.; Sever, E.K.; Marovic, D.; Tarle, Z. Real-time Light Transmittance Monitoring for Determining Polymerization Completeness of Conventional and Bulk Fill Dental Composites. Oper. Dent. 2018, 43, E19–E31. [Google Scholar] [CrossRef] [PubMed]
- Tarle, Z.; Attin, T.; Marovic, D.; Andermatt, L.; Ristic, M.; Taubock, T.T. Influence of irradiation time on subsurface degree of conversion and microhardness of high-viscosity bulk-fill resin composites. Clin. Oral Investig. 2015, 19, 831–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugen, H.J.; Marovic, D.; Par, M.; Thieu, M.K.L.; Reseland, J.E.; Johnsen, G.F. Bulk Fill Composites Have Similar Performance to Conventional Dental Composites. Int. J. Mol. Sci. 2020, 21, 5136. [Google Scholar] [CrossRef] [PubMed]
- Marovic, D.; Taubock, T.T.; Attin, T.; Panduric, V.; Tarle, Z. Monomer conversion and shrinkage force kinetics of low-viscosity bulk-fill resin composites. Acta Odontol. Scand. 2015, 73, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Czasch, P.; Ilie, N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin. Oral. Investig. 2013, 17, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N.; Kessler, A.; Durner, J. Influence of various irradiation processes on the mechanical properties and polymerisation kinetics of bulk-fill resin based composites. J. Dent. 2013, 41, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Bucuta, S.; Ilie, N. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin. Oral Investig. 2014, 18, 1991–2000. [Google Scholar] [CrossRef]
- Todd, J. Scientific Documentation 3s PowerCure; Ivoclar Vivadent: Schaan, Liechtenstein, 2019. [Google Scholar]
- 3M. Filtek One Bulk Fill Restaurative. Shrinkage, Stress and Bulk Fill Restoratives 2020. Available online: https://multimedia.3m.com/mws/media/1317665O/1317663m-filtek-one-bulk-fill-restorative-shrink-stressand-bulk-fill-restoratives.pdf (accessed on 11 October 2021).
- Gorsche, C.; Griesser, M.; Gescheidt, G.; Moszner, N.; Liska, R. β-Allyl Sulfones as Addition–Fragmentation Chain Transfer Reagents: A Tool for Adjusting Thermal and Mechanical Properties of Dimethacrylate Networks. Macromolecules 2014, 47, 7327–7336. [Google Scholar] [CrossRef]
- Gorsche, C.; Koch, T.; Moszner, N.; Liska, R. Exploring the benefits of β-allyl sulfones for more homogeneous dimethacrylate photopolymer networks. Polym. Chem. 2015, 6, 2038–2047. [Google Scholar] [CrossRef]
- Graf, N.; Ilie, N. Long-Term Stability of a RAFT-Modified Bulk-Fill Resin-Composite under Clinically Relevant Versus ISO-Curing Conditions. Materials 2020, 13, 5350. [Google Scholar] [CrossRef] [PubMed]
- Soh, M.S.; Yap, A.U. Influence of curing modes on crosslink density in polymer structures. J. Dent. 2004, 32, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Par, M.; Marovic, D.; Attin, T.; Tarle, Z.; Taubock, T.T. Effect of rapid high-intensity light-curing on polymerization shrinkage properties of conventional and bulk-fill composites. J. Dent. 2020, 101, 103448. [Google Scholar] [CrossRef] [PubMed]
- Par, M.; Spanovic, N.; Marovic, D.; Attin, T.; Tarle, Z.; Taubock, T.T. Rapid high-intensity light-curing of bulk-fill composites: A quantitative analysis of marginal integrity. J. Dent. 2021, 111, 103708. [Google Scholar] [CrossRef]
- Moszner, N.; Fischer, U.K.; Ganster, B.; Liska, R.; Rheinberger, V. Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent. Mater. 2008, 24, 901–907. [Google Scholar] [CrossRef]
- Kowalska, A.; Sokolowski, J.; Bociong, K. The Photoinitiators Used in Resin Based Dental Composite-A Review and Future Perspectives. Polymers 2021, 13, 470. [Google Scholar] [CrossRef]
- Simon, S. Fill-Up! Dual Curing Bulk Composite: Scientific Documentation. 2018. Available online: https://global.coltene.com/fileadmin/Data/EN/scientific/20180904_Scient_Docu_Fill-Up_.pdf (accessed on 1 December 2021).
- Par, M.; Tarle, Z.; Hickel, R.; Ilie, N. Mechanical properties of experimental composites containing bioactive glass after artificial aging in water and ethanol. Clin. Oral Investig. 2019, 23, 2733–2741. [Google Scholar] [CrossRef]
- Drummond, J.L. Degradation, fatigue, and failure of resin dental composite materials. J. Dent. Res. 2008, 87, 710–719. [Google Scholar] [CrossRef] [Green Version]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003, 24, 655–665. [Google Scholar] [CrossRef]
- Curtis, A.R.; Shortall, A.C.; Marquis, P.M.; Palin, W.M. Water uptake and strength characteristics of a nanofilled resin-based composite. J. Dent. 2008, 36, 186–193. [Google Scholar] [CrossRef]
- Randolph, L.D.; Palin, W.M.; Leloup, G.; Leprince, J.G. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent. Mater. 2016, 32, 1586–1599. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Szczesio-Wlodarczyk, A.; Sokolowski, J.; Kleczewska, J.; Bociong, K. Ageing of Dental Composites Based on Methacrylate Resins-A Critical Review of the Causes and Method of Assessment. Polymers 2020, 12, 882. [Google Scholar] [CrossRef] [PubMed]
- Sideridou, I.D.; Karabela, M.M.; Bikiaris, D.N. Aging studies of light cured dimethacrylate-based dental resins and a resin composite in water or ethanol/water. Dent. Mater. 2007, 23, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D.; Ilie, N.; Hickel, R.; Reis, A.; Loguercio, A.; Rousson, V. Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials-A systematic review. Dent. Mater. 2017, 33, e101–e114. [Google Scholar] [CrossRef]
- Marovic, D.; Par, M.; Crnadak, A.; Sekelja, A.; Negovetic Mandic, V.; Gamulin, O.; Rakic, M.; Tarle, Z. Rapid 3 s Curing: What Happens in Deep Layers of New Bulk-Fill Composites? Materials 2021, 14, 515. [Google Scholar] [CrossRef]
- de Mendonça, B.C.; Soto-Montero, J.R.; de Castro, E.F.; Kury, M.; Cavalli, V.; Rueggeberg, F.A.; Giannini, M. Effect of extended light activation and increment thickness on physical properties of conventional and bulk-filled resin-based composites. Clin. Oral Investig. 2021. [Google Scholar] [CrossRef]
- Par, M.; Repusic, I.; Skenderovic, H.; Milat, O.; Spajic, J.; Tarle, Z. The effects of extended curing time and radiant energy on microhardness and temperature rise of conventional and bulk-fill resin composites. Clin. Oral Investig. 2019, 23, 3777–3788. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 4049:2009 Dentistry-Polymer-Based Filling, Restorative and Luting Materials; International Organization for Standardization: Geneva, Switzerland, 2000. [Google Scholar]
- Par, M.; Gamulin, O.; Marovic, D.; Klaric, E.; Tarle, Z. Effect of temperature on post-cure polymerization of bulk-fill composites. J. Dent. 2014, 42, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Quinn, J.B.; Quinn, G.D. A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent. Mater. 2010, 26, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Leprince, J.G.; Palin, W.M.; Vanacker, J.; Sabbagh, J.; Devaux, J.; Leloup, G. Physico-mechanical characteristics of commercially available bulk-fill composites. J. Dent. 2014, 42, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Fronza, B.M.; Ayres, A.; Pacheco, R.R.; Rueggeberg, F.A.; Dias, C.; Giannini, M. Characterization of Inorganic Filler Content, Mechanical Properties, and Light Transmission of Bulk-fill Resin Composites. Oper. Dent. 2017, 42, 445–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Par, M.; Marovic, D.; Attin, T.; Tarle, Z.; Tauböck, T.T. The effect of rapid high-intensity light-curing on micromechanical properties of bulk-fill and conventional resin composites. Sci. Rep. 2020, 10, 10560. [Google Scholar] [CrossRef] [PubMed]
- Beun, S.; Glorieux, T.; Devaux, J.; Vreven, J.; Leloup, G. Characterization of nanofilled compared to universal and microfilled composites. Dent. Mater. 2007, 23, 51–59. [Google Scholar] [CrossRef]
- Kalachandra, S. Influence of fillers on the water sorption of composites. Dent. Mater. 1989, 5, 283–288. [Google Scholar] [CrossRef]
- Ilie, N.; Watts, D.C. Outcomes of ultra-fast (3 s) photo-cure in a RAFT-modified resin-composite. Dent. Mater. 2020, 36, 570–579. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Berge, H.X.; Condon, J.R. In vitro aging of dental composites in water--effect of degree of conversion, filler volume, and filler/matrix coupling. J. Biomed. Mater. Res. 1998, 42, 465–472. [Google Scholar] [CrossRef]
- Schneider, L.F.; Moraes, R.R.; Cavalcante, L.M.; Sinhoreti, M.A.; Correr-Sobrinho, L.; Consani, S. Cross-link density evaluation through softening tests: Effect of ethanol concentration. Dent. Mater. 2008, 24, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Sideridou, I.D.; Achilias, D.S.; Karabela, M.M. Sorption kinetics of ethanol/water solution by dimethacrylate-based dental resins and resin composites. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81, 207–218. [Google Scholar] [CrossRef]
- Hayashi, J.; Tagami, J.; Chan, D.; Sadr, A. New bulk-fill composite system with high irradiance light polymerization: Integrity and degree of conversion. Dent. Mater. 2020, 36, 1615–1623. [Google Scholar] [CrossRef]
- Andrzejewska, E. Photopolymerization kinetics of multifunctional monomers. Prog. Polym. Sci. 2001, 26, 605–665. [Google Scholar] [CrossRef]
- El-Askary, F.S.; Botros, S.A.; Soliman, Z.D.E.-D.; Nassif, M.S.A.; Özcan, M. Flexure strength of methacrylate- and ormocer-based bulk fill resin composites: Effect of material thickness and distance to photo-polymerization device. J. Adhes. Sci. Technol. 2020, 35, 547–558. [Google Scholar] [CrossRef]
- Monterubbianesi, R.; Orsini, G.; Tosi, G.; Conti, C.; Librando, V.; Procaccini, M.; Putignano, A. Spectroscopic and Mechanical Properties of a New Generation of Bulk Fill Composites. Front. Physiol. 2016, 7, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, K.S.; Zhang, K.; Antonucci, J.M. Systematic variation of interfacial phase reactivity in dental nanocomposites. Biomaterials 2005, 26, 5095–5103. [Google Scholar] [CrossRef]
- Misilli, T.; Gonulol, N. Water sorption and solubility of bulk-fill composites polymerized with a third generation LED LCU. Braz. Oral. Res. 2017, 31, e80. [Google Scholar] [CrossRef] [Green Version]
- Alshali, R.Z.; Salim, N.A.; Satterthwaite, J.D.; Silikas, N. Long-term sorption and solubility of bulk-fill and conventional resin-composites in water and artificial saliva. J. Dent. 2015, 43, 1511–1518. [Google Scholar] [CrossRef]
- Kenmoe, S.; Biedermann, P.U. Water aggregation and dissociation on the ZnO(101[combining macron]0) surface. Phys. Chem. Chem. Phys. 2017, 19, 1466–1486. [Google Scholar] [CrossRef] [Green Version]
- Sirovica, S.; Solheim, J.H.; Skoda, M.W.A.; Hirschmugl, C.J.; Mattson, E.C.; Aboualizadeh, E.; Guo, Y.; Chen, X.; Kohler, A.; Romanyk, D.L.; et al. Origin of micro-scale heterogeneity in polymerisation of photo-activated resin composites. Nat. Commun. 2020, 11, 1849. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, H.; Sun, H.; Liu, Y.; Liu, W.; Su, B.; Li, S. The Development of Filler Morphology in Dental Resin Composites: A Review. Materials 2021, 14, 5612. [Google Scholar] [CrossRef]
- Xavier, T.A.; FrÓEs-Salgado, N.R.d.G.; Meier, M.M.; Braga, R.R. Influence of silane content and filler distribution on chemical-mechanical properties of resin composites. Braz. Oral Res. 2015, 29, 1–8. [Google Scholar] [CrossRef] [Green Version]
Type | Name (LOT, Abbreviation) | Organic Matrix | Filler Mass/ vol % | Manufacturer- Recommended Curing |
---|---|---|---|---|
High- viscosity | Tetric® PowerFill (X56571) (PFILL) | Bis-GMA, Bis-EMA, UDMA, PBPA, DCP, β-allyl sulfone | 76–77/ 53–54 | 3 s with 2700–3300 mW/cm2 10 s with 900–1400 mW/cm2 |
3M™ Filtek™ One Bulk Fill Restorative (NA61219) (FIL) | AUDMA, diurethane-DMA, 1,12-dodecan-DMA | ~ 76.5/ ~58.5 | * 20 s with 1000–2000 mW/cm2 | |
Tetric EvoCeram® Bulk Fill (Y16932) (TBF) | Bis-GMA, Bis-EMA, UDMA | 76–77/ 53–54 | 10 s with ≥1000 mW/cm2 | |
Tetric EvoCeram® (Y09823) (TEC) Conventional reference | Bis-GMA, UDMA, Bis-EMA | 75–76/ 53–55 | 10 s with ≥1000 mW/cm2 | |
Medium-viscosity (dual-cure) | Fill-Up! (J57515) (COL) | methacrylates | ~65/ ~49 | 5 s with 1600 mW/cm2 10 s with 800 mW/cm2 |
Low- viscosity | Tetric® PowerFlow (Y15023) (PFLW) | Bis-GMA, Bis-EMA, UDMA, DCP | 68.2/ 46.4 | 3 s with 2700–3300 mW/cm2 10 s with 900–1400 mW/cm2 |
SDR® Plus Bulk Fill Flowable (00028647) (SDR) | modified UDMA, TEGDMA, dimethacrylate, trimethacrylate resins | 70.5/ 47.4 | 20 s with ≥550 mW/cm2 | |
Tetric EvoFlow® (Y15650) (TFLW) Conventional reference | Bis-GMA, UDMA, decandiol DMA | 57.5/ 30.7 | 10 s with ≥1000 mW/cm2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marovic, D.; Par, M.; Macan, M.; Klarić, N.; Plazonić, I.; Tarle, Z. Aging-Dependent Changes in Mechanical Properties of the New Generation of Bulk-Fill Composites. Materials 2022, 15, 902. https://doi.org/10.3390/ma15030902
Marovic D, Par M, Macan M, Klarić N, Plazonić I, Tarle Z. Aging-Dependent Changes in Mechanical Properties of the New Generation of Bulk-Fill Composites. Materials. 2022; 15(3):902. https://doi.org/10.3390/ma15030902
Chicago/Turabian StyleMarovic, Danijela, Matej Par, Matea Macan, Nikolina Klarić, Iva Plazonić, and Zrinka Tarle. 2022. "Aging-Dependent Changes in Mechanical Properties of the New Generation of Bulk-Fill Composites" Materials 15, no. 3: 902. https://doi.org/10.3390/ma15030902
APA StyleMarovic, D., Par, M., Macan, M., Klarić, N., Plazonić, I., & Tarle, Z. (2022). Aging-Dependent Changes in Mechanical Properties of the New Generation of Bulk-Fill Composites. Materials, 15(3), 902. https://doi.org/10.3390/ma15030902