Simulation of Electrical and Thermal Properties of Granite under the Application of Electrical Pulses Using Equivalent Circuit Models
Abstract
:1. Introduction
2. Simulation Methods
2.1. Simulation Model
2.2. Composition of Granite
2.3. Electrical and Thermal Properties of Minerals
2.4. Applied Voltage
2.5. Temperature in the Rock
3. Results and Discussion
3.1. Distribution of Minerals in Granite
3.2. Simulation Results
4. Conclusions
- (1)
- The electric field of the granite confirmed that the electric field dropped near the plagioclase;
- (2)
- The electrical conductivity of the plagioclase was higher than that of the other minerals due to its higher void volume, which has a significant effect on the electric field distribution;
- (3)
- The temperature change in the granite observed a very high temperature change near the upper/HV electrode, but it was very small as away from that electrode.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Otsuki, A.; De Campo, L.; Garvey, C.J.; Rehm, C. H2O/D2O Contrast Variation for Ultra-Small-Angle Neutron Scattering to Minimize Multiple Scattering Effects of Colloidal Particle Suspensions. Colloids Interfaces 2018, 2, 37. [Google Scholar] [CrossRef] [Green Version]
- Andres, U.; Timoshkin, I.; Jirestig, J.; Stallknecht, H. Liberation of valuable inclusions in ores and slags by electrical pulses. Powder Technol. 2001, 114, 40–50. [Google Scholar] [CrossRef]
- Tester, J.W.; Anderson, B.J.; Batchelor, A.S. Impact of enhanced geothermal systems on US energy supply in the twenty-first century. Phil. Trans. Math. Phys. Eng. Sci. 2007, 365, 1057–1094. [Google Scholar] [CrossRef] [PubMed]
- Liberation of Minerals with Electric Pulse (Digital Description of Prof. Shuji Owada’s Work, Waseda University, Japan). Available online: https://www.waseda.jp/top/news/6137 (accessed on 20 December 2021). (In Japanese).
- Taylor, L.; Skuse, D.; Blackburn, S.; Greenwood, R. Stirred media mills in the mining industry: Material grindability, energy-size relationships, and operating conditions. Powder Technol. 2020, 369, 1–16. [Google Scholar] [CrossRef]
- Andres, U. Development and prospects of mineral liberation by electrical pulses. Int. J. Miner. Process. 2010, 97, 31–38. [Google Scholar] [CrossRef]
- Usov, A.F.; Tsukerman, V.A. Prospective of electric impulse processes for the study of the structure and processing of mineral raw materials. Dev. Miner. Process. 2000, 13, C2-8–C2-15. [Google Scholar]
- Gao, P.; Yuan, S.; Han, Y.; Li, Y.; Chen, H. Experimental study on the effect of pretreatment with high-voltage electrical pulses on mineral liberation and separation of magnetite ore. Minerals 2017, 7, 153. [Google Scholar] [CrossRef] [Green Version]
- Fujita, T.; Yoshimi, I.; Tanaka, Y.; Jeyadevan, B.; Miyazaki, T. Research of liberation by Using High Voltage Discharge Impulse and Electromagnetic Waves. Min. Mater. Process. Inst. Jpn. 1999, 115, 749–754, (In Japanese with English Abstract). [Google Scholar]
- Andres, U.; Bialecki, R. Liberation of mineral constituents by high-voltage pulses. Powder Technol. 1986, 48, 269–277. [Google Scholar] [CrossRef]
- Fujita, T.; Shibayama, A. Liberation for the pre-treatment of recycle by means of electrical disintegration and disintegration by underwater explosion. Resour. Process. 2002, 49, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Walsh, S.D.C.; Vogler, D. Simulating electropulse fracture of granitic rock. Int. J. Rock Mech. Min. Sci. 2020, 128, 104238. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Duan, L.; Tan, S.; Chikhotkin, V. Influences on High -Voltage Electro Pulse Boring in Granite. Energies 2018, 11, 2461. [Google Scholar] [CrossRef] [Green Version]
- Nishizawa, O.; Kanagawa, K. Introduction to the Physics of Rocks; Maruzen Publishing: Tokyo, Japan, 2012. [Google Scholar]
- Sinmyo, R.; Keppler, H. Electrical conductivity of NaCl-bearing aqueous fluids to 600 °C and 1 gpa. Contrib. Mineral. Petrol. 2017, 172, 4. [Google Scholar] [CrossRef]
- Arps, J.J. The effect of temperature on the density and electrical resistivity of sodium chloride solutions. J. Petrol. Technol. 1953, 5, 17–20. [Google Scholar] [CrossRef]
- Glover, P.W.; Hole, M.J.; Pous, J. A modified Archie’s law for two conducting phases. Earth Planet. Sci. Lett. 2000, 180, 369–383. [Google Scholar] [CrossRef]
- Vogler, D.; Walsh, S.D.C.; Rudolf von Rohr, P.; Saar, M.O. Simulation of rock failure modes in thermal spallation drilling. Acta Geotech. 2020, 15, 2327–2340. [Google Scholar] [CrossRef]
- Walsh, S.D.C.; Lomov, I.N. Micromechanical modeling of thermal spallation in granitic rock. Int. J. Heat Mass Tran. 2013, 65, 366–373. [Google Scholar] [CrossRef]
- Singh, J.P.; Walsh, S.D.C.; Koch, D.L. Brownian dynamics of a suspension of particles with constrained voronoi cell volumes. Langmuir 2015, 31, 6829–6841. [Google Scholar] [CrossRef]
- Cho, S.H.; Yokota, M.; Ito, M.; Kawasaki, S.; Jeong, S.B.; Kim, B.K.; Kaneko, K. Electrical disintegration and micro-focus X-ray CT observations of cement paste samples with dispersed mineral particles. Miner. Eng. 2014, 57, 79–85. [Google Scholar] [CrossRef]
Mineral | Volume [%] |
---|---|
Quartz | 30 |
Plagioclase | 20 |
K-Feldspar | 45 |
Biotite | 5 |
Mineral | Log(A) [log(s/m)] | B [eV] |
---|---|---|
Quartz | 6.3 | 0.82 |
Plagioclase | 0.041 | 0.85 |
K-Feldspar | 0.11 | 0.85 |
Biotite | −13.8 | 0.00 |
Mineral | Void [%] | Permittivity |
---|---|---|
Quartz | 0.9 | 6.53 |
Plagioclase | 1.8 | 6.91 |
K-Feldspar | 0.9 | 6.2 |
Biotite | 0.9 | 9.28 |
Mineral | Resistance R [Ω] | Capacitance C [F] | tanδ |
---|---|---|---|
Quartz | 1.57 × 107 | 2.90 × 10−15 | 175 |
Plagioclase | 5.54 × 106 | 3.08 × 10−15 | 467 |
K-Feldspar | 1.57 × 107 | 6.15 × 10−15 | 82.5 |
Biotite | 1.57 × 107 | 8.26 × 10−15 | 61.4 |
Mineral | Heat Resistance [K/W] | Heat Conductivity [W/m⋅K] |
---|---|---|
Quartz | 1300 | 7.69 |
Plagioclase | 4673 | 2.14 |
K-Feldspar | 4329 | 2.31 |
Biotite | 4950 | 2.02 |
Voltage | Maximum Value of Electric Field [V/m] | Minimum Value of Electric Field [V/m] | Maximum Value of Heat [W] | Minimum Value of Heat [W] | Maximum Value of Temperature Change [K] | Minimum Value of Temperature Change [K] |
---|---|---|---|---|---|---|
50% rise | 0.262 | 0.00 | 1133 | 0.0283 | ||
100% rise | 0.7351 | 0.00 | 3182 | 0.0664 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukushima, K.; Kabir, M.; Kanda, K.; Obara, N.; Fukuyama, M.; Otsuki, A. Simulation of Electrical and Thermal Properties of Granite under the Application of Electrical Pulses Using Equivalent Circuit Models. Materials 2022, 15, 1039. https://doi.org/10.3390/ma15031039
Fukushima K, Kabir M, Kanda K, Obara N, Fukuyama M, Otsuki A. Simulation of Electrical and Thermal Properties of Granite under the Application of Electrical Pulses Using Equivalent Circuit Models. Materials. 2022; 15(3):1039. https://doi.org/10.3390/ma15031039
Chicago/Turabian StyleFukushima, Kyosuke, Mahmudul Kabir, Kensuke Kanda, Naoko Obara, Mayuko Fukuyama, and Akira Otsuki. 2022. "Simulation of Electrical and Thermal Properties of Granite under the Application of Electrical Pulses Using Equivalent Circuit Models" Materials 15, no. 3: 1039. https://doi.org/10.3390/ma15031039
APA StyleFukushima, K., Kabir, M., Kanda, K., Obara, N., Fukuyama, M., & Otsuki, A. (2022). Simulation of Electrical and Thermal Properties of Granite under the Application of Electrical Pulses Using Equivalent Circuit Models. Materials, 15(3), 1039. https://doi.org/10.3390/ma15031039