Influence of Decreased Temperature of Tensile Testing on the Annealing-Induced Hardening and Deformation-Induced Softening Effects in Ultrafine-Grained Al–0.4Zr Alloy
Abstract
:1. Introduction
2. Materials and Experimental Procedures
3. Results and Discussion
3.1. Microstructure Characterization
3.2. Mechanical Properties
3.3. Strain Rate Sensitivity and Activation Energy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000, 45, 103–189. [Google Scholar] [CrossRef]
- Zhilyaev, A.P.; Langdon, T.G. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 2008, 53, 893–979. [Google Scholar] [CrossRef]
- Knipling, K.E.; Dunand, D.C.; Seidman, D.N. Criteria for developing castable, creep-resistant aluminum-based alloys–A review. Int. J. Mater. Res. 2006, 97, 246–265. [Google Scholar] [CrossRef]
- Belov, N.A.; Alabin, A.N.; Teleuova, A.R. Comparative analysis of alloying additives as applied to the production of heat-resistant aluminum-base wires. Met. Sci. Heat Treat. 2012, 53, 455–459. [Google Scholar] [CrossRef]
- Knych, T.; Piwowarska, M.; Uliasz, P. Studies on the process of heat treatment of conductive AlZr alloys obtained in various productive processes. Arch. Metall. Mater. 2011, 56, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Belyi, D.I. Aluminum alloys for cable conductor. Kabeli i Provoda 2012, 332, 8–15. (In Russian) [Google Scholar]
- Belov, N.A.; Alabin, A.N.; Matveeva, I.A.; Eskin, D.G. Effect of Zr additions and annealing temperature on electrical conductivity and hardness of hot rolled Al sheets. Trans. Nonfer. Met. Soc. China 2015, 25, 2817–2826. [Google Scholar] [CrossRef] [Green Version]
- Knipling, K.E.; Dunand, D.C.; Seidman, D.N. Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425 °C. Acta Mater. 2008, 56, 114–127. [Google Scholar] [CrossRef]
- Orlova, T.S.; Latynina, T.A.; Murashkin, M.Y.; Kazykhanov, V.U. The Effect of Additional Severe Plastic Deformation at Elevated Temperatures on the Microstructure and Functional Properties of the Ultrafine-Grained Al–0.4 Zr Alloy. Phys. Solid State 2019, 61, 2509–2519. [Google Scholar] [CrossRef]
- Mavlyutov, A.M.; Latynina, T.A.; Murashkin, M.Y.; Valiev, R.Z.; Orlova, T.S. Effect of annealing on the microstructure and mechanical properties of ultrafine-grained commercially pure Al. Phys. Solid State 2017, 59, 1970–1977. [Google Scholar] [CrossRef]
- Orlova, T.S.; Skiba, N.V.; Mavlyutov, A.M.; Valiev, R.Z.; Murashkin, M.Y.; Gutkin, M.Y. Hardening by annealing and implementation of high ductility of ultra-fine grained aluminum: Experiment and theory. Rev. Adv. Mater. Sci. 2018, 57, 224–240. [Google Scholar] [CrossRef]
- Huang, X.; Hansen, N.; Tsuji, N. Hardening by annealing and softening by deformation in nanostructured metals. Science 2006, 312, 249–251. [Google Scholar] [CrossRef] [Green Version]
- Orlova, T.S.; Mavlyutov, A.M.; Gutkin, M.Y. Suppression of the annealing-induced hardening effect in ultrafine-grained Al at low temperatures. Mater. Sci. Eng. A 2021, 802, 140588. [Google Scholar] [CrossRef]
- Latynina, T.A.; Mavlyutov, A.M.; Murashkin, M.Y.; Valiev, R.Z.; Orlova, T.S. The effect of hardening by annealing in ultrafine-grained Al-0.4Zr alloy: Influence of Zr microadditives. Philos. Mag. 2019, 99, 2424–2443. [Google Scholar] [CrossRef]
- Ilario, P. Machine for the Continuous Casting of Metal Rods. U.S. Patent 2659948, 24 November 1953. [Google Scholar]
- Schoerner, R.J. Method of Fabricating Aluminum Alloy Rod. U.S. Patent 3670401, 20 June 1972. [Google Scholar]
- Lutterotti, L.; Matthies, R.; Wenk, H.R.; Schultz, A.; Richardson, J. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 1997, 81, 594–600. [Google Scholar] [CrossRef]
- Williamson, G.K.; Smallman, R.E. Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the X-Ray Debye-Scherrer Spectrum. Philos. Mag. 1956, 1, 34–45. [Google Scholar] [CrossRef]
- Humphreys, F.J. Quantitative metallography by electron backscattered diffraction. J. Microsc. 1999, 195, 170–185. [Google Scholar] [CrossRef]
- Lefebvre, W.; Chabanais, F.; Orlova, T.S.; Rigutti, L.; Murashkin, M.Yu.; Skiba, N.V.; Gutkin, M.Yu. Accelerated precipitation driven by excess free volume relaxation of near equilibrium grain boundaries in ultrafine grain Al-Zr alloy. in preparation.
- Bae, D.; Kim, S.H.; Kim, D.H.; Kim, W.T. Deformation behavior of Mg–Zn–Y alloys reinforced by icosahedral quasicrystalline particles. Acta Mater. 2002, 50, 2343–2356. [Google Scholar] [CrossRef]
- Zhang, X.R.; Sun, G.X.; Zai, W.; Jiang, Y.; Jiang, Z.H.; Han, S.; Bi, G.L.; Fang, D.Q.; Lian, J.S. Effects of temperature and strain rate on deformation behaviors of an extruded Mg-5Zn-2.5 Y-1Ce-0.5 Mn alloy. Mater. Sci. Eng. A 2021, 799, 140141. [Google Scholar] [CrossRef]
- Sabirov, I.; Estrin, Y.; Barnett, M.R.; Timokhina, I.; Hodgson, P.D. Enhanced tensile ductility of an ultra-fine-grained aluminum alloy. Scr. Mater. 2008, 58, 163–166. [Google Scholar] [CrossRef]
- Chinh, N.Q.; Csanádi, T.; Győri, T.; Valiev, R.Z.; Straumal, B.B.; Kawasaki, M.; Langdon, T.G. Strain rate sensitivity studies in an ultrafine-grained Al–30 wt.% Zn alloy using micro-and nanoindentation. Mater. Sci. Eng. A 2012, 543, 117–120. [Google Scholar] [CrossRef]
- Chinh, N.Q.; Szommer, P.; Csanádi, T.; Langdon, T.G. Flow processes at low temperatures in ultrafine-grained aluminum. Mater. Sci. Eng. A 2006, 434, 326–334. [Google Scholar] [CrossRef]
- Isaev, N.V.; Grigorova, T.V.; Zabrodin, P.A. Strain-rate sensitivity of flow stress of ultrafine grained aluminum in the temperature range 4.2-295 K. Low Temp. Phys. 2009, 35, 1151–1159. [Google Scholar] [CrossRef]
- Sadykov, D.I.; Orlova, T.S.; Murashkin, M.Y. Influence of strain rate on the effect of plastification of ultrafine-grained Al-Cu-Zr alloy in high-strength state. Fizika Tverdogo Tela 2022, 64, 683–690. [Google Scholar]
- Vladimirov, V.I. Physical Theory of Plasticity and Strength, Part I; LPI: Saint Petersburg, Russia, 1973. (In Russian) [Google Scholar]
- Nadgornyi, E. Dislocation dynamics and mechanical properties of crystals. Prog. Mater. Sci. 1988, 31, 1–530. [Google Scholar] [CrossRef]
- Gutkin, M.Y.; Orlova, T.S.; Skiba, N.V. Grain-boundary nanoprecipitates-mediated mechanism of strengthening in Al-Cu-Zr alloy structured by high-pressure torsion. Mater. Phys. Mech. 2022, in press. [Google Scholar]
- Frost, H.J.; Ashby, M.F. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Nazarov, A.A. Grain-boundary diffusion in nanocrystals with a time-dependent diffusion coefficient. Phys. Solid State 2003, 45, 1166–1169. [Google Scholar] [CrossRef]
State | EBSD Data [9,14] | XRD Data | |||||
---|---|---|---|---|---|---|---|
dav (nm) | fHAGB (%) | θav (grad) | a (Å) | DXRD (nm) | <ε2>1/2, ×10−5 | Ldis, ×1012 (m−2) | |
HPT | 835 ± 13 | 82 | 33.8 | 4.0505 ± 0.0001 | 570 ± 15 | 2.5 ± 0.02 | 5.2 |
HPT + AN | 880 ± 15 | 86 | 39.8 | 4.0512 ± 0.0001 | 815 ± 15 | 0.9 ± 0.02 | 1.4 |
HPT + AN + 0.25 HPT | - | - | - | 4.0515 ± 0.0001 | 495 ± 10 | 2.2 ± 0.01 | 5.4 |
HPT + AN + 0.75 HPT | - | - | - | 4.0509 ± 0.0001 | 490 ± 10 | 2.3 ± 0.01 | 5.7 |
State | Tdef (K) | σ0.2 (MPa) | σUTS (MPa) | δ (%) | δ1 (%) |
---|---|---|---|---|---|
Initial State | 293 | 122 ± 2 | 131 ± 2 | 26 ± 2 | 4 ± 1 |
HPT | 77 | 314 ± 3 | 367 ± 1 | 14 ± 1 | 1 ± 0.2 |
193 | 239 ± 1 | 295 ± 1 | 12 ± 0.5 | 1.4 ± 0.2 | |
223 | 217 ± 3 | 265 ± 2 | 13 ± 0.5 | 1.5 ± 0.1 | |
253 | 186 ± 3 | 239 ± 1 | 16 ± 1 | 2.0 ± 0.7 | |
273 | 161 ± 1 | 212 ± 4 | 21 ± 1 | 4.0 ± 0.3 | |
293 | 130 ± 1 | 202 ± 1 | 22 ± 1 | 8.3 ± 0.7 | |
HPT + AN | 77 | 319 ± 21 | 375 ± 7 | 14 ± 1 | 0.8 ± 0.2 |
193 | 285 ± 8 | 311 ± 1 | 12 ± 1 | 0.7 ± 0.1 | |
223 | 264 ± 2 | 296 ± 2 | 12 ± 0.5 | 0.9 ± 0.1 | |
253 | 253 ± 6 | 283 ± 5 | 11 ± 0.5 | 1.1 ± 0.1 | |
273 | 241 ± 2 | 268 ± 1 | 12 ± 0.2 | 1.2 ± 0.1 | |
293 | 223 ± 2 | 252 ± 1 | 13 ± 0.5 | 1.5 ± 0.1 | |
HPT + AN + 0.25 HPT | 77 | 338 ± 5 | 386 ± 4 | 12 ± 1 | 1.1 ± 0.2 |
193 | 252 ± 2 | 304 ± 2 | 13 ± 1 | 1.6 ± 0.1 | |
223 | 218 ± 4 | 279 ± 2 | 16 ± 1 | 1.9 ± 0.2 | |
253 | 193 ± 1 | 248 ± 2 | 18 ± 1 | 2.7 ± 0.1 | |
273 | 172 ± 1 | 230 ± 2 | 20 ± 1 | 4.6 ± 0.1 | |
293 | 131 ± 3 | 213 ± 2 | 24 ± 1 | 9.4 ± 0.1 |
Material | State | m | Q|ε = 0.2% (kJ/mol) | Q|ε = 1% (kJ/mol) |
---|---|---|---|---|
Al–0.4Zr | HPT | 0.045 | 82 ± 15 | 80 ± 10 |
HPT + AN | 23 ± 4 | 28 ± 5 | ||
HPT + AN + 0.25 HPT | 0.045 | 80 ± 17 | 80 ± 10 | |
CP Al * | HPT | 0.03 [24] | 95 ± 15 | |
HPT + AN | 7.5 | |||
HPT + AN + 0.25 HPT | 95 ± 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlova, T.S.; Mavlyutov, A.M.; Murashkin, M.Y.; Enikeev, N.A.; Evstifeev, A.D.; Sadykov, D.I.; Gutkin, M.Y. Influence of Decreased Temperature of Tensile Testing on the Annealing-Induced Hardening and Deformation-Induced Softening Effects in Ultrafine-Grained Al–0.4Zr Alloy. Materials 2022, 15, 8429. https://doi.org/10.3390/ma15238429
Orlova TS, Mavlyutov AM, Murashkin MY, Enikeev NA, Evstifeev AD, Sadykov DI, Gutkin MY. Influence of Decreased Temperature of Tensile Testing on the Annealing-Induced Hardening and Deformation-Induced Softening Effects in Ultrafine-Grained Al–0.4Zr Alloy. Materials. 2022; 15(23):8429. https://doi.org/10.3390/ma15238429
Chicago/Turabian StyleOrlova, Tatiana S., Aydar M. Mavlyutov, Maxim Yu. Murashkin, Nariman A. Enikeev, Alexey D. Evstifeev, Dinislam I. Sadykov, and Michael Yu. Gutkin. 2022. "Influence of Decreased Temperature of Tensile Testing on the Annealing-Induced Hardening and Deformation-Induced Softening Effects in Ultrafine-Grained Al–0.4Zr Alloy" Materials 15, no. 23: 8429. https://doi.org/10.3390/ma15238429
APA StyleOrlova, T. S., Mavlyutov, A. M., Murashkin, M. Y., Enikeev, N. A., Evstifeev, A. D., Sadykov, D. I., & Gutkin, M. Y. (2022). Influence of Decreased Temperature of Tensile Testing on the Annealing-Induced Hardening and Deformation-Induced Softening Effects in Ultrafine-Grained Al–0.4Zr Alloy. Materials, 15(23), 8429. https://doi.org/10.3390/ma15238429