High-Iron Bauxite Residue (Red Mud) Valorization Using Hydrochemical Conversion of Goethite to Magnetite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Composition of Samples
2.2. Phisical Properties of Samples
2.3. Materials
2.4. Experimental
2.5. Experimental Data Calculation
3. Results and Discussion
3.1. The Nature of the Al-Containing Phase in the Raw Materials
Sample | BR | Sands | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature, K | Phase | № | δ | ε (Δ = 2ε) | Γexp | Heff | S | δ | ε (Δ = 2ε) | Γexp | Heff | S |
mm/s | kOe | % | mm/s | kOe | % | |||||||
296 | α-(Fe1−xAlx)2O3 | 1 | 0.37 ± 0.01 | −0.10 ± 0.01 | 0.34 ± 0.01 | 504.7 ± 0.2 | 26 ± 1 | 0.37 ± 0.01 | −0.10 ± 0.01 | 0.36 ± 0.01 | 504.1 ± 0.3 | 19 ± 1 |
2 | 0.37 ± 0.01 | −0.09 ± 0.01 | 0.59 ± 0.03 | 482 ± 1 | 15 ± 1 | 0.36 ± 0.01 | −0.08 ± 0.01 | 0.58 ± 0.04 | 482 ± 2 | 11 ± 1 | ||
α-Fe1−xAlxOOH | 3 | 0.45 ± 0.01 | −0.21 ± 0.01 | 1.60 ± 0.01 | 332.1 ± 0.1 | 10 ± 1 | 0.45 ± 0.05 | −0.21 ± 0.05 | 1.60 ± 0.09 | 332 ± 2 | 23 ± 1 | |
4 | 0.32 ± 0.01 | −0.01 ± 0.01 | 1.60 ± 0.01 | 195.5 ± 0.1 | 11 ± 2 | 0.32 ± 0.07 | −0.01 ± 0.05 | 1.60 ± 0.09 | 196 ± 4 | 15 ± 1 | ||
β-Fe1−xAlxO(OH, Cl) | 5 | 0.37 ± 0.01 | (1.0 ± 0.3) | 0.88 ± 0.07 | 15 ± 5 | 0.39 ± 0.01 | (1.1 ± 0.1) | 0.84 ± 0.09 | 12 ± 2 | |||
6 | 0.36 ± 0.01 | (0.53 ± 0.01) | 0.33 ± 0.03 | 23 ± 5 | 0.36 ± 0.01 | (0.52 ± 0.01) | 0.36 ± 0.01 | 19 ± 2 | ||||
77.6 | α-(Fe1−xAlx)2O3 | 1 | 0.48 ± 0.01 | −0.08 ± 0.01 | 0.37 ± 0.01 | 525.2 ± 0.1 | 38.4 ± 0.7 | 0.47 ± 0.01 | −0.07 ± 0.01 | 0.40 ± 0.01 | 525.1 ± 0.1 | 31.8 ± 0.5 |
α-Fe1−xAlxOOH | 2 | 0.47 ± 0.01 | −0.12 ± 0.01 | 0.56 ± 0.01 | 482.9 ± 0.4 | 22 ± 1 | 0.47 ± 0.01 | −0.12 ± 0.01 | 0.43 ± 0.01 | 485.5 ± 0.2 | 24.9 ± 0.9 | |
3 | 0.47 ± 0.01 | −0.15 ± 0.01 | 0.75 ± 0.04 | 451 ± 1 | 13 ± 1 | 0.47 ± 0.01 | −0.13 ± 0.01 | 0.56 ± 0.02 | 461.8 ± 0.5 | 18 ± 1 | ||
β-Fe1−xAlxO(OH, Cl) | 4 | 0.40 ± 0.04 | −0.09 ± 0.03 | 2.18 ± 0.01 | 391.6 ± 0.1 | 19.0 ± 0.5 | 0.47 ± 0.01 | −0.14 ± 0.01 | 1.34 ± 0.04 | 422 ± 2 | 21 ± 1 | |
Fe3 + Oh (DSP) | 5 | 0.59 ± 0.01 | (2.37 ± 0.01) | 0.33 ± 0.02 | 2.9 ± 0.1 | 0.59 ± 0.01 | (2.38 ± 0.01) | 0.25 ± 0.01 | 2.5 ± 0.2 | |||
6 | 0.47 ± 0.01 | (0.71 ± 0.02) | 0.62 ± 0.03 | 4.8 ± 0.2 | 0.57 ± 0.05 | (1.0 ± 0.1) | 1.2 ± 0.3 | 2.0 ± 0.3 |
3.2. The Effect of Leaching Parameters on the Al Extraction and the Fe, Na Content in the Solid Residue
3.3. Leaching Kinetics
3.4. Solid Residue Characterization
3.4.1. Chemical Composition of the Residues
3.4.2. Mössbauer Analysis
Sample | BR Residue | Sand Residue | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature, K | Phase | № | δ | ε (Δ = 2ε) | Γexp | Heff | S | δ in Fe3-δO4 | δ | ε (Δ = 2ε) | Γexp | Heff | S | δ in Fe3-δO4 |
mm/s | kOe | % | mm/s | kOe | % | |||||||||
296 | α-(Fe1−xAlx)2O3 | 1 | 0.38 ± 0.01 | −0.10 ± 0.01 | 0.28 ± 0.01 | 508.7 ± 0.2 | 12.4 ± 0.6 | 0.38 ± 0.01 | −0.11 ± 0.01 | 0.24 ± 0.01 | 509.8 ± 0.3 | 6.1 ± 0.4 | ||
Fe3-δO4 | 2 | 0.32 ± 0.01 | −0.03 ± 0.01 | 0.49 ± 0.01 | 488.4 ± 0.2 | 29 ± 1 | 0.15 | 0.32 ± 0.01 | −0.02 ± 0.01 | 0.52 ± 0.01 | 485.3 ± 0.2 | 40.3 ± 0.8 | 0.25 | |
3 | 0.63 ± 0.01 | −0.01 ± 0.01 | 0.62 ± 0.01 | 454.0 ± 0.2 | 22.4 ± 0.7 | 0.62 ± 0.01 | −0.03 ± 0.01 | 0.61 ± 0.02 | 454.4 ± 0.4 | 27 ± 2 | ||||
4 | 0.38 ± 0.01 | −0.16 ± 0.03 | 3.5 ± 0.2 | 330 ± 4 | 32 ± 2 | 0.65 ± 0.01 | −0.00 ± 0.01 | 1.06 ± 0.04 | 422 ± 2 | 25 ± 2 | ||||
Fe3 + Oh | 5 | 0.32 ± 0.02 | (0.94 ± 0.03) | 0.89 ± 0.07 | 4.3 ± 0.3 | 0.38 ± 0.01 | (0.94 ± 0.01) | 0.9 ± 0.2 | 1.6 ± 0.2 | |||||
77.6 | α-(Fe1−xAlx)2O3 | 1 | 0.50 ± 0.01 | −0.09 ± 0.01 | 0.37 ± 0.01 | 527.3 ± 0.2 | 27.4 ± 0.8 | 0.49 ± 0.01 | −0.08 ± 0.01 | 0.36 ± 0.01 | 526.0 ± 0.3 | 12.6 ± 0.9 | ||
Fe3-δO4 | 2 | 0.40 ± 0.01 | 0.03 ± 0.01 | 0.37 ± 0.01 | 507.7 ± 0.4 | 15 ± 1 | 0.16 | 0.37 ± 0.01 | −0.01 ± 0.01 | 0.30 ± 0.01 | 502.6 ± 0.2 | 10.5 ± 0.8 | 0.24 | |
3 | 0.52 ± 0.01 | −0.09 ± 0.01 | 0.55 ± 0.02 | 492.5 ± 0.5 | 26 ± 2 | 0.52 ± 0.01 | −0.03 ± 0.01 | 0.87 ± 0.02 | 501.6 ± 0.7 | 42 ± 1 | ||||
4 | 0.67 ± 0.01 | −0.04 ± 0.01 | 1.00 ± 0.03 | 464.2 ± 0.8 | 32 ± 1 | 0.84 ± 0.01 | −0.07 ± 0.01 | 1.12 ± 0.03 | 457.2 ± 0.9 | 35 ± 1 |
3.4.3. Magnetization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swain, B.; Akcil, A.; Lee, J. Red Mud Valorization an Industrial Waste Circular Economy Challenge; Review over Processes and Their Chemistry. Crit. Rev. Environ. Sci. Technol. 2022, 52, 520–570. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, J.; Zhang, Y.; Peng, D.; Huang, T.; Sun, C. PH-Dependent Leaching Characteristics of Major and Toxic Elements from Red Mud. Int. J. Environ. Res. Public Health 2019, 16, 2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruyters, S.; Mertens, J.; Vassilieva, E.; Dehandschutter, B.; Poffijn, A.; Smolders, E. The Red Mud Accident in Ajka (Hungary): Plant Toxicity and Trace Metal Bioavailability in Red Mud Contaminated Soil. Environ. Sci. Technol. 2011, 45, 1616–1622. [Google Scholar] [CrossRef]
- Winkler, D.; Bidló, A.; Bolodár-Varga, B.; Erdő, Á.; Horváth, A. Long-Term Ecological Effects of the Red Mud Disaster in Hungary: Regeneration of Red Mud Flooded Areas in a Contaminated Industrial Region. Sci. Total Environ. 2018, 644, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, H. Metallurgical Process for Valuable Elements Recovery from Red Mud—A Review. Hydrometallurgy 2015, 155, 29–43. [Google Scholar] [CrossRef]
- Liu, Y.; Naidu, R. Hidden Values in Bauxite Residue (Red Mud): Recovery of Metals. Waste Manag. 2014, 34, 2662–2673. [Google Scholar] [CrossRef]
- Loginova, I.V.; Shoppert, A.A.; Chaikin, L.I. Extraction of Rare-Earth Metals During the Systematic Processing of Diaspore-Boehmite Bauxites. Metallurgist 2016, 60, 198–203. [Google Scholar] [CrossRef]
- Shiryaeva, E.V.; Podgorodetskii, G.S.; Malysheva, T.Y.; Gorbunov, V.B.; Zavodyanyi, A.V.; Shapovalov, A.N. Effects of Adding Low-Alkali Red Mud to the Sintering Batch at OAO Ural’skaya Stal’. Steel Transl. 2014, 44, 6–10. [Google Scholar] [CrossRef]
- Loginova, I.V.; Shoppert, A.A.; Chaikin, L.I. Effect of Adding Sintering Furnace Electrostatic Precipitator Dust on Combined Leaching of Bauxites and Cakes. Metallurgist 2015, 59, 698–704. [Google Scholar] [CrossRef]
- Alkan, G.; Yagmurlu, B.; Gronen, L.; Dittrich, C.; Ma, Y.; Stopic, S.; Friedrich, B. Selective Silica Gel Free Scandium Extraction from Iron-Depleted Red Mud Slags by Dry Digestion. Hydrometallurgy 2019, 185, 266–272. [Google Scholar] [CrossRef]
- Shoppert, A.; Loginova, I.; Napol’skikh, J.; Valeev, D. High-Selective Extraction of Scandium (Sc) from Bauxite Residue (Red Mud) by Acid Leaching with MgSO4. Materials 2022, 15, 1343. [Google Scholar] [CrossRef]
- Shoppert, A.; Loginova, I.; Napol’skikh, J.; Kyrchikov, A.; Chaikin, L.; Rogozhnikov, D.; Valeev, D. Selective Scandium (Sc) Extraction from Bauxite Residue (Red Mud) Obtained by Alkali Fusion-Leaching Method. Materials 2022, 15, 433. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chai, W.; Han, G.; Wang, W.; Yang, S.; Liu, J. A Perspective of Stepwise Utilisation of Bayer Red Mud: Step Two—Extracting and Recovering Ti from Ti-Enriched Tailing with Acid Leaching and Precipitate Flotation. J. Hazard. Mater. 2016, 307, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Pasechnik, L.A.; Skachkov, V.M.; Chufarov, A.Y.; Suntsov, A.Y.; Yatsenko, S.P. High Purity Scandium Extraction from Red Mud by Novel Simple Technology. Hydrometallurgy 2021, 202, 105597. [Google Scholar] [CrossRef]
- Beavogui, M.C.; Balmaev, B.G. Influence of grain-size composition of bauxite on its recovery at fria aluminum plant in guinea. Min. Inf. Anal. Bull. 2017, 9, 131–138. [Google Scholar] [CrossRef]
- Valeev, D.; Pankratov, D.; Shoppert, A.; Sokolov, A.; Kasikov, A.; Mikhailova, A.; Salazar-Concha, C.; Rodionov, I. Mechanism and Kinetics of Iron Extraction from High Silica Boehmite–Kaolinite Bauxite by Hydrochloric Acid Leaching. Trans. Nonferrous Met. Soc. China 2021, 31, 3128–3149. [Google Scholar] [CrossRef]
- Li, G.; Liu, M.; Rao, M.; Jiang, T.; Zhuang, J.; Zhang, Y. Stepwise Extraction of Valuable Components from Red Mud Based on Reductive Roasting with Sodium Salts. J. Hazard. Mater. 2014, 280, 774–780. [Google Scholar] [CrossRef]
- Alkan, G.; Schier, C.; Gronen, L.; Stopic, S.; Friedrich, B. A Mineralogical Assessment on Residues after Acidic Leaching of Bauxite Residue (Red Mud) for Titanium Recovery. Metals 2017, 7, 458. [Google Scholar] [CrossRef] [Green Version]
- Cardenia, C.; Balomenos, E.; Wai Yin Tam, P.; Panias, D. A Combined Soda Sintering and Microwave Reductive Roasting Process of Bauxite Residue for Iron Recovery. Minerals 2021, 11, 222. [Google Scholar] [CrossRef]
- Anawati, J.; Azimi, G. Integrated Carbothermic Smelting—Acid Baking—Water Leaching Process for Extraction of Scandium, Aluminum, and Iron from Bauxite Residue. J. Clean. Prod. 2022, 330, 129905. [Google Scholar] [CrossRef]
- Zhang, Y.; Lü, W.; Qi, Y.; Zou, Z. Recovery of Iron and Calcium Aluminate Slag from High-Ferrous Bauxite by High-Temperature Reduction and Smelting Process. Int. J. Miner. Metall. Mater. 2016, 23, 881–890. [Google Scholar] [CrossRef]
- Valeev, D.; Zinoveev, D.; Kondratiev, A.; Lubyanoi, D.; Pankratov, D. Reductive Smelting of Neutralized Red Mud for Iron Recovery and Produced Pig Iron for Heat-Resistant Castings. Metals 2019, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, Y.; Zhou, Q.; Qi, T.; Liu, G.; Peng, Z.; Wang, H. Transformation of Hematite in Diasporic Bauxite during Reductive Bayer Digestion and Recovery of Iron. Trans. Nonferrous Met. Soc. China 2017, 27, 2715–2726. [Google Scholar] [CrossRef]
- Li, X.; Yu, S.; Dong, W.; Chen, Y.; Zhou, Q.; Qi, T.; Liu, G.; Peng, Z.; Jiang, Y. Investigating the Effect of Ferrous Ion on the Digestion of Diasporic Bauxite in the Bayer Process. Hydrometallurgy 2015, 152, 183–189. [Google Scholar] [CrossRef]
- Pasechnik, L.A.; Skachkov, V.M.; Bogdanova, E.A.; Chufarov, A.Y.; Kellerman, D.G.; Medyankina, I.S.; Yatsenko, S.P. A Promising Process for Transformation of Hematite to Magnetite with Simultaneous Dissolution of Alumina from Red Mud in Alkaline Medium. Hydrometallurgy 2020, 196, 105438. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Y.; Qi, T.; Zhou, Q.; Liu, G.; Peng, Z.; Li, X. Cleaning Disposal of High-Iron Bauxite Residue Using Hydrothermal Hydrogen Reduction. Bull. Environ. Contam. Toxicol. 2022, 109, 163–168. [Google Scholar] [CrossRef]
- Vu, H.; Jandová, J.; Hron, T. Recovery of Pigment-Quality Magnetite from Jarosite Precipitates. Hydrometallurgy 2010, 101, 1–6. [Google Scholar] [CrossRef]
- Boháček, J.; Šubrt, J.; Hanslík, T.; Tláskal, J. Preparing Particulate Magnetites with Pigment Properties from Suspensions of Basic Iron(III) Sulphates with the Structure of Jarosite. J. Mater. Sci. 1993, 28, 2827–2832. [Google Scholar] [CrossRef]
- Hage, J.L.T.; Schuiling, R.D.; Vriend, S.P. Production of Magnetite from Sodiumjarosite Under Reducing Hydrothermal Conditions. The Reduction of Fe III to Fe II with Cellulose. Can. Metall. Q. 1999, 38, 267–276. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Y.; Qi, T.; Zhou, Q.; Liu, G.; Peng, Z.; Li, X. Comprehensive Utilization of Al-Goethite-Containing Red Mud Treated Through Low-Temperature Sodium Salt-Assisted Roasting–Water Leaching. J. Sustain. Metall. 2022, 8, 825–836. [Google Scholar] [CrossRef]
- Ingram-Jones, V.J.; Slade, R.C.T.; Davies, T.W.; Southern, J.C.; Salvador, S. Dehydroxylation Sequences of Gibbsite and Boehmite: Study of Differences between Soak and Flash Calcination and of Particle-Size Effects. J. Mater. Chem. 1996, 6, 73. [Google Scholar] [CrossRef]
- Derie, R.; Ghodsi, M.; Calvo-Roche, C. DTA Study of the Dehydration of Synthetic Goethite AFeOOH. J. Therm. Anal. 1976, 9, 435–440. [Google Scholar] [CrossRef]
- Marsh, A.; Heath, A.; Patureau, P.; Evernden, M.; Walker, P. A Mild Conditions Synthesis Route to Produce Hydrosodalite from Kaolinite, Compatible with Extrusion Processing. Microporous Mesoporous Mater. 2018, 264, 125–132. [Google Scholar] [CrossRef]
- Grudinsky, P.; Zinoveev, D.; Pankratov, D.; Semenov, A.; Panova, M.; Kondratiev, A.; Zakunov, A.; Dyubanov, V.; Petelin, A. Influence of Sodium Sulfate Addition on Iron Grain Growth during Carbothermic Roasting of Red Mud Samples with Different Basicity. Metals 2020, 10, 1571. [Google Scholar] [CrossRef]
- Rostovshchikova, T.N.; Smirnov, V.V.; Tsodikov, M.V.; Bukhtenko, O.V.; Maksimov, Y.V.; Kiseleva, O.I.; Pankratov, D.A. Catalytic Conversions of Chloroolefins over Iron Oxide Nanoparticles 1. Isomerization of Dichlorobutenes in the Presence of Iron Oxide Nanopaticles Immobilized on Silicas with Different Structures. Russ. Chem. Bull. 2005, 54, 1418–1424. [Google Scholar] [CrossRef]
- Pankratov, D.A.; Yurev, A.I. Mössbauer Diagnostics of the Isomorphic Substitution of Iron for Aluminum in Triclinic Iron Vanadate. Bull. Russ. Acad. Sci. Phys. 2013, 77, 759–764. [Google Scholar] [CrossRef]
- Fysh, S.A.; Clark, P.E. A Mössbauer Study of the Iron Mineralogy of Acid-Leached Bauxite. Hydrometallurgy 1983, 10, 285–303. [Google Scholar] [CrossRef]
- Janot, C.; Gibert, H. Les constituants du fer dans certaines bauxites naturelles étudiées par effet Mössbauer. Bull. Société Fr. Minéralogie Cristallogr. 1970, 93, 213–223. [Google Scholar] [CrossRef]
- Vodyanitskii, Y.N.; Minkina, T.M.; Kubrin, S.P.; Pankratov, D.A.; Fedorenko, A.G. Common and Rare Iron, Sulfur, and Zinc Minerals in Technogenically Contaminated Hydromorphic Soil from Southern Russia. Environ. Geochem. Health 2020, 42, 95–108. [Google Scholar] [CrossRef]
- Yurkov, G.Y.; Pankratov, D.A.; Koksharov, Y.A.; Ovtchenkov, Y.A.; Semenov, A.V.; Korokhin, R.A.; Shcherbakova, G.I.; Gorobinskiy, L.V.; Burakova, E.A.; Korolkov, A.V.; et al. Composite Materials Based on a Ceramic Matrix of Polycarbosilane and Iron-Containing Nanoparticles. Ceram. Int. 2022, 48, 37410–37422. [Google Scholar] [CrossRef]
- Pankratov, D.A. Mössbauer Study of Oxo Derivatives of Iron in the Fe2O3-Na2O2 System. Inorg. Mater. 2014, 50, 82–89. [Google Scholar] [CrossRef]
- Betteridge, S.; Catlow, C.R.A.; Gay, D.H.; Grimes, R.W.; Hargreaves, J.S.J.; Hutchings, G.J.; Joyner, R.W.; Pankhurst, Q.A.; Taylor, S.H. Preparation, Characterisation and Activity of an Iron/Sodalite Catalyst for the Oxidation of Methane to Methanol. Top. Catal. 1994, 1, 103–110. [Google Scholar] [CrossRef]
- Krauss, K.; Höpke, A.; Mahn, M. European Coatings Journal. 2019. Available online: https://www.orioncarbons.com/en/european_coatings_journal.pdf (accessed on 3 November 2022).
- Levenspiel, O. Chemical Reaction Engineering, 3rd ed.; Wiley: New York, NY, USA, 1999; ISBN 978-0-471-25424-9. [Google Scholar]
- Hidalgo, T.; Kuhar, L.; Beinlich, A.; Putnis, A. Kinetics and Mineralogical Analysis of Copper Dissolution from a Bornite/Chalcopyrite Composite Sample in Ferric-Chloride and Methanesulfonic-Acid Solutions. Hydrometallurgy 2019, 188, 140–156. [Google Scholar] [CrossRef]
- Koutsoupa, S.; Koutalidi, S.; Bourbos, E.; Balomenos, E.; Panias, D. Electrolytic Iron Production from Alkaline Bauxite Residue Slurries at Low Temperatures: Carbon-Free Electrochemical Process for the Production of Metallic Iron. Johns. Matthey Technol. Rev. 2021, 65, 366–374. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Y.; Zhang, T. Approaches to Improve Alumina Extraction Based on the Phase Transformation Mechanism of Recovering Alkali and Extracting Alumina by the Calcification-Carbonization Method. Hydrometallurgy 2019, 189, 105123. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Y.; Qi, T.; Zhou, Q.; Liu, G.; Peng, Z.; Li, X. Low-Temperature Thermal Conversion of Al-Substituted Goethite in Gibbsitic Bauxite for Maximum Alumina Extraction. RSC Adv. 2022, 12, 4162–4174. [Google Scholar] [CrossRef]
- Pankratov, D.A.; Anuchina, M.M.; Spiridonov, F.M.; Krivtsov, G.G. Fe3—ΔO4 Nanoparticles Synthesized in the Presence of Natural Polyelectrolytes. Crystallogr. Rep. 2020, 65, 393–397. [Google Scholar] [CrossRef]
- Pankratov, D.A.; Anuchina, M.M. Nature-Inspired Synthesis of Magnetic Non-Stoichiometric Fe3O4 Nanoparticles by Oxidative in Situ Method in a Humic Medium. Mater. Chem. Phys. 2019, 231, 216–224. [Google Scholar] [CrossRef]
- Bondarenko, L.S.; Pankratov, D.A.; Dzeranov, A.A.; Dzhardimalieva, G.I.; Streltsova, A.N.; Zarrelli, M.; Kydralieva, K.A. A Simple Method for Quantification of Nonstoichiometric Magnetite Nanoparticles Using Conventional X-Ray Diffraction Technique. Mendeleev Commun. 2022, 32, 642–644. [Google Scholar] [CrossRef]
- Tuutijärvi, T.; Lu, J.; Sillanpää, M.; Chen, G. As(V) Adsorption on Maghemite Nanoparticles. J. Hazard. Mater. 2009, 166, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Maihatchi, A.; Pons, M.-N.; Ricoux, Q.; Goettmann, F.; Lapicque, F. Electrolytic Iron Production from Alkaline Suspensions of Solid Oxides: Compared Cases of Hematite, Iron Ore and Iron-Rich Bayer Process Residues. J. Electrochem. Sci. Eng. 2020, 10, 95–102. [Google Scholar] [CrossRef]
Sample | Fe | Si | Ti | Al | Na | O | Other |
---|---|---|---|---|---|---|---|
BR | 41.70 | 4.25 | 4.36 | 12.34 | 4.53 | 30.68 | 2.14 |
Sands | 56.23 | 0.77 | 1.38 | 5.55 | 1.26 | 33.80 | 1.01 |
Sample | Desilication Product | Aluminum Hydroxide in the Solid Matrix | Reprecipitated Gibbsite |
---|---|---|---|
BR | 31.3 | 26.7 | 42.0 |
Sands | 19.3 | 80.7 | - |
Equation | Al-Containing Phase | Temperature, °C | Apparent Rate Constant k (min−1) | R2 (%) |
---|---|---|---|---|
Diffusion through the product layer (Figure 7a) | DSP | 100 110 120 | 0.0010 0.0012 0.0017 | 0.964 0.972 0.967 |
Solid matrix | 100 110 120 | 0.0076 0.0088 0.0105 | 0.904 0.865 0.800 | |
Surface chemical reaction (Figure 7b) | DSP | 100 110 120 | 0.0022 0.0025 0.0030 | 0.851 0.861 0.830 |
Solid matrix | 100 110 120 | 0.0079 0.0114 0.0145 | 0.996 0.966 0.971 | |
Diffusion through the liquid film (Figure 7c) | DSP | 100 110 120 | 0.0044 0.0048 0.0055 | 0.929 0.930 0.912 |
Solid matrix | 100 110 120 | 0.0090 0.0093 0.0095 | 0.870 0.852 0.832 |
Sample | Fe | Si | Ti | Al | Na | O | Sc | P | S | Other |
---|---|---|---|---|---|---|---|---|---|---|
BR solid residue | 58.31 | 2.06 | 3.92 | 1.33 | 1.45 | 31.35 | 0.006 | 0.007 | 0.08 | 1.58 |
Sands solid residue | 69.55 | 0.34 | 1.01 | 0.15 | 0.24 | 27.81 | 0.005 | 0.009 | 0.003 | 0.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoppert, A.; Valeev, D.; Diallo, M.M.; Loginova, I.; Beavogui, M.C.; Rakhmonov, A.; Ovchenkov, Y.; Pankratov, D. High-Iron Bauxite Residue (Red Mud) Valorization Using Hydrochemical Conversion of Goethite to Magnetite. Materials 2022, 15, 8423. https://doi.org/10.3390/ma15238423
Shoppert A, Valeev D, Diallo MM, Loginova I, Beavogui MC, Rakhmonov A, Ovchenkov Y, Pankratov D. High-Iron Bauxite Residue (Red Mud) Valorization Using Hydrochemical Conversion of Goethite to Magnetite. Materials. 2022; 15(23):8423. https://doi.org/10.3390/ma15238423
Chicago/Turabian StyleShoppert, Andrei, Dmitry Valeev, Mamodou Malal Diallo, Irina Loginova, Marie Constance Beavogui, Abdukhakim Rakhmonov, Yevgeniy Ovchenkov, and Denis Pankratov. 2022. "High-Iron Bauxite Residue (Red Mud) Valorization Using Hydrochemical Conversion of Goethite to Magnetite" Materials 15, no. 23: 8423. https://doi.org/10.3390/ma15238423
APA StyleShoppert, A., Valeev, D., Diallo, M. M., Loginova, I., Beavogui, M. C., Rakhmonov, A., Ovchenkov, Y., & Pankratov, D. (2022). High-Iron Bauxite Residue (Red Mud) Valorization Using Hydrochemical Conversion of Goethite to Magnetite. Materials, 15(23), 8423. https://doi.org/10.3390/ma15238423