Molecular Dynamics Study on Structure, Vibrational Properties, and Transport Coefficients of Liquid Alumina
Abstract
1. Introduction
2. Simulation Methods
3. Results and Discussion
3.1. Structural Properties
3.2. Vibrational Properties
3.3. Transport Properties
3.3.1. Self-Diffusion Coefficient
3.3.2. Thermal Conductivity
3.3.3. Viscosity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, C.; Wang, D.; Zhang, J. Wear Mechanisms and Notch Formation of Whisker-Reinforced Alumina and Sialon Ceramic Tools during High-Speed Turning of Inconel 718. Materials 2022, 15, 3860. [Google Scholar] [CrossRef] [PubMed]
- Medvedovski, E. Alumina-mullite ceramics for structural applications. Ceram. Int. 2006, 32, 369–375. [Google Scholar] [CrossRef]
- Bermejo, R.; Sánchez-Herencia, A.J.; Llanes, L.; Baudín, C. High-temperature mechanical behaviour of flaw tolerant alumina-zirconia multilayered ceramics. Acta Mater. 2007, 55, 4891–4901. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, S.; Li, Y.; Yang, F.; Yu, H.; Chu, Y.; Li, T.; Yin, H. Improving Anti-Coking Properties of Ni/Al2O3 Catalysts via Synergistic Effect of Metallic Nickel and Nickel Phosphides in Dry Methane Reforming. Materials 2022, 15, 3044. [Google Scholar] [CrossRef] [PubMed]
- Netskina, O.; Mucha, S.; Veselovskaya, J.; Bolotov, V.; Komova, O.; Ishchenko, A.; Bulavchenko, O.; Prosvirin, I.; Pochtar, A.; Rogov, V. CO2 methanation: Nickel-alumina catalyst prepared by solid-state combustion. Materials 2021, 14, 6789. [Google Scholar] [CrossRef]
- Alayat, A.; Echeverria, E.; Sotoudehniakarani, F.; Mcllroy, D.N.; McDonald, A.G. Alumina coated silica nanosprings (ns) support based cobalt catalysts for liquid hydrocarbon fuel production from syngas. Materials 2019, 12, 1810. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.; Sun, X.; Sun, G.; Liang, Y.; Bi, J. Influence of Additives on Microstructure and Mechanical Properties of Alumina Ceramics. Materials 2022, 15, 2956. [Google Scholar] [CrossRef]
- Krell, A.; Blank, P.; Wagner, E.; Bartels, G. Advances in the grinding efficiency of sintered alumina abrasives. J. Am. Ceram. Soc. 1996, 79, 763–769. [Google Scholar] [CrossRef]
- Al Qader, H.; Jasim, A.M.; Salim, H.; Xing, Y.; Stalla, D. Enhanced Mechanical and Durability Properties of Cement Mortar by Using Alumina Nanocoating on Carbon Nanofibers. Materials 2022, 15, 2768. [Google Scholar] [CrossRef]
- Li, W.; Chen, K.; Liu, L.; Yang, Y.; Zhu, S. Effect of SiO2-Al2O3 Glass Composite Coating on the Oxidation Behavior of Ti60 Alloy. Materials 2020, 13, 5085. [Google Scholar] [CrossRef]
- Ksiazek, M.; Boron, L.; Tchorz, A. Study on the Microstructure, Mechanical Properties, and Erosive Wear Behavior of HVOF Sprayed Al2O3-15 wt.% TiO2 Coating with NiAl Interlayer on Al-Si Cast Alloy. Materials 2020, 13, 4122. [Google Scholar] [CrossRef]
- Tang, Y.; Ge, G.; Li, Y.; Huang, L. Effect of Al2O3 with different nanostructures on the insulating properties of epoxy-based composites. Materials 2020, 13, 4235. [Google Scholar] [CrossRef]
- Tian, B.L.; Chen, C.; Li, Y.R.; Zhang, W.L.; Liu, X.Z. Sodium beta-alumina thin films as gate dielectrics for AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors. Chin. Phys. B 2012, 21, 126102. [Google Scholar] [CrossRef]
- Sedghi, A.; Riahi-Noori, N.; Hamidnezhad, N.; Salmani, M.R. Effect of chemical composition and alumina content on structure and properties of ceramic insulators. Bull. Mater. Sci. 2014, 37, 321–325. [Google Scholar] [CrossRef]
- Mardare, A.I.; Kaltenbrunner, M.; Sariciftci, N.S.; Bauer, S.; Hassel, A.W. Ultra-thin anodic alumina capacitor films for plastic electronics. Phys. Status Solidi (a) 2012, 209, 813–818. [Google Scholar] [CrossRef]
- Mozalev, A.; Sakairi, M.; Takahashi, H.; Habazaki, H.; Hubálek, J. Nanostructured anodic-alumina-based dielectrics for high-frequency integral capacitors. Thin Solid Films 2014, 550, 486–494. [Google Scholar] [CrossRef]
- Jani, A.M.M.; Losic, D.; Voelcker, N.H. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater Sci. 2013, 58, 636–704. [Google Scholar] [CrossRef]
- Golubović, A.; Nikolić, S.; Đurić, S.; Valčić, A. The growth of sapphire single crystals. J. Serb. Chem. Soc. 2001, 66, 411–418. [Google Scholar] [CrossRef]
- Farr, W.G.; Creedon, D.L.; Goryachev, M.; Benmessai, K.; Tobar, M.E. Ultrasensitive microwave spectroscopy of paramagnetic impurities in sapphire crystals at millikelvin temperatures. Phys. Rev. B 2013, 88, 224426. [Google Scholar] [CrossRef]
- Schneider, S. Cooperative determination of the melting point of alumina. Pure Appl. Chem. 1970, 21, 115–122. [Google Scholar] [CrossRef][Green Version]
- Ansell, S.; Krishnan, S.; Weber, J.R.; Felten, J.J.; Nordine, P.C.; Beno, M.A.; Price, D.L.; Saboungi, M.L. Structure of Liquid Aluminum Oxide. Phys. Rev. Lett. 1997, 78, 464–466. [Google Scholar] [CrossRef]
- Waseda, Y.; Sugiyama, K.; Toguri, J. Direct determination of the local structure in molten alumina by high temperature X-ray diffraction. Z. Naturforsch. A Phys. Sci. 1995, 50, 770–774. [Google Scholar] [CrossRef]
- Hennet, L.; Thiaudiere, D.; Gailhanou, M.; Landron, C.; Coutures, J.P.; Price, D.L. Fast X-ray scattering measurements on molten alumina using a 120 curved position sensitive detector. Rev. Sci. Instrum. 2002, 73, 124–129. [Google Scholar] [CrossRef]
- Landron, C.; Hennet, L.; Jenkins, T.; Greaves, G.; Coutures, J.; Soper, A. Liquid alumina: Detailed atomic coordination determined from neutron diffraction data using empirical potential structure refinement. Phys. Rev. Lett. 2001, 86, 4839. [Google Scholar] [CrossRef] [PubMed]
- Landron, C.; Soper, A.; Jenkins, T.; Greaves, G.; Hennet, L.; Coutures, J. Measuring neutron scattering structure factor for liquid alumina and analysing the radial distribution function by empirical potential structural refinement. J. Non·Cryst. Solids 2001, 293, 453–457. [Google Scholar] [CrossRef]
- Coutures, J.P.; Massiot, D.; Bessada, C.; Echegut, P.; Taulelle, F. Etude par RMN 27A1 d’aluminates liquides dans le domaine 1600–2100 °C. C.R. Acad. Sci. Paris 1990, 310, 1041. [Google Scholar]
- Florian, P.; Massiot, D.; Poe, B.; Farnan, I.; Coutures, J.P. A time resolved 27Al NMR study of the cooling process of liquid alumina from 2450 C to crystallisation. Solid State Nucl. Magn. Reson. 1995, 5, 233–238. [Google Scholar] [CrossRef]
- Poe, B.T.; McMillan, P.F.; Cote, B.; Massiot, D.; Coutures, J.P. Silica-alumina liquids: In-situ study by high-temperature aluminum-27 NMR spectroscopy and molecular dynamics simulation. J. Phys. Chem. 1992, 96, 8220–8224. [Google Scholar] [CrossRef]
- Skinner, L.B.; Barnes, A.C.; Salmon, P.S.; Hennet, L.; Fischer, H.E.; Benmore, C.J.; Kohara, S.; Weber, J.R.; Bytchkov, A.; Wilding, M.C. Joint diffraction and modeling approach to the structure of liquid alumina. Phys. Rev. B 2013, 87, 024201. [Google Scholar] [CrossRef]
- Enderby, J.; Ansell, S.; Krishnan, S.; Price, D.; Saboungi, M.L. The electrical conductivity of levitated liquids. Appl. Phys. Lett. 1997, 71, 116–118. [Google Scholar] [CrossRef]
- Paradis, P.-F.; Ishikawa, T.; Saita, Y.; Yoda, S. Non-contact thermophysical property measurements of liquid and undercooled alumina. Jpn. J. Appl. Phys. 2004, 43, 1496. [Google Scholar] [CrossRef]
- Paradis, P.F.; Ishikawa, T. Surface tension and viscosity measurements of liquid and undercooled alumina by containerless techniques. Jpn. J. Appl. Phys. 2005, 44, 5082. [Google Scholar] [CrossRef]
- Glorieux, B.; Millot, F.; Rifflet, J. Surface tension of liquid alumina from contactless techniques. Int. J. Thermophys. 2002, 23, 1249–1257. [Google Scholar] [CrossRef]
- Krishnan, S.; Weber, J.R.; Schiffman, R.A.; Nordine, P.C.; Reed, R.A. Refractive index of liquid aluminum oxide at 0.6328 μm. J. Am. Ceram. Soc. 1991, 74, 881–883. [Google Scholar] [CrossRef]
- Vashishta, P.; Kalia, R.K.; Nakano, A.; Rino, J.P. Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina. J. Appl. Phys. 2008, 103, 083504. [Google Scholar] [CrossRef]
- Van Hoang, V.; Oh, S.K. Structure and diffusion simulation of liquid Al2O3. Phys. B 2004, 352, 342–352. [Google Scholar] [CrossRef]
- Van Hoang, V. Molecular dynamics study on structure and properties of liquid and amorphous Al2O3. Phys. Rev. B 2004, 70, 134204. [Google Scholar] [CrossRef]
- Ahuja, R.; Belonoshko, A.; Johansson, B. Melting and liquid structure of aluminum oxide using a molecular-dynamics simulation. Phy. Rev. E 1998, 57, 1673. [Google Scholar] [CrossRef]
- San Miguel, M.A.; Sanz, J.F.; Alvarez, L.J.; Odriozola, J.A. Molecular-dynamics simulations of liquid aluminum oxide. Phys. Rev. B 1998, 58, 2369. [Google Scholar] [CrossRef]
- Van Hoang, V.; Oh, S.K. Computer simulation of the structural transformation in liquid Al2O3. J. Phys. Condens. Matter 2005, 17, 3025. [Google Scholar] [CrossRef]
- Hung, P.; Vinh, L.; Nghiep, D.; Nguyen, P. Computer simulation of liquid Al2O3. J. Phys. Condens. Matter 2006, 18, 9309. [Google Scholar] [CrossRef]
- Sergio, D.; Gonzalo, G. Structural, elastic, vibrational and electronic properties of amorphous Al2O3 from ab initio calculations. J. Phys. Condens. Matter 2011, 23, 495401. [Google Scholar]
- Hemmati, M.; Wilson, M.; Madden, P.A. Structure of liquid Al2O3 from a computer simulation model. J. Phys. Chem. B 1999, 103, 4023–4028. [Google Scholar] [CrossRef]
- Nhan, N.T.; Hung, P.K.; Nghiep, D.M.; Thang, T.Q.; Kim, H.S. Molecular dynamics study on local structure of amorphous and liquid Al2O3. Met. Mater. Int. 2006, 12, 167–172. [Google Scholar] [CrossRef]
- Hoang, V.V.; Oh, S.K. Simulation of pressure-induced phase transition in liquid and amorphous Al2O3. Phys. Rev. B 2005, 72, 54209. [Google Scholar] [CrossRef]
- Hoang, V.V. About an order of liquid-liquid phase transition in simulated liquid Al2O3. Phys. Lett. A 2005, 335, 439–443. [Google Scholar] [CrossRef]
- Gheribi, A.E.; Serva, A.; Salanne, M.; Machado, K.; Zanghi, D.; Bessada, C.; Chartrand, P. Study of the partial charge transport properties in the molten alumina via molecular dynamics. ACS Omega 2019, 4, 8022–8030. [Google Scholar] [CrossRef]
- Bouhadja, M.; Jakse, N. Structural and dynamic properties of aluminosilicate melts: A molecular dynamics study. J. Phys. Condens. Matter 2019, 32, 104002. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; In’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Sodeifian, G.; Razmimanesh, F. Diffusional interaction behavior of NSAIDs in lipid bilayer membrane using molecular dynamics (MD) simulation: Aspirin and Ibuprofen. J. Biomol. Struct. Dyn. 2019, 37, 1666–1684. [Google Scholar] [CrossRef]
- Billinge, S.J. The atomic pair distribution function: Past and present. Z. Krist.-Cryst. Mater. 2004, 219, 117–121. [Google Scholar] [CrossRef]
- Terban, M.W.; Billinge, S.J. Structural analysis of molecular materials using the pair distribution function. Chem. Rev. 2021, 122, 1208–1272. [Google Scholar] [CrossRef]
- Hoppe, R. The coordination number-an “inorganic chameleon”. Angew. Chem. Int. Edit. 1970, 9, 25–34. [Google Scholar] [CrossRef]
- Ishimaru, M.; Yoshida, K.; Kumamoto, T.; Motooka, T. Molecular-dynamics study on atomistic structures of liquid silicon. Phys. Rev. B 1996, 54, 4638. [Google Scholar] [CrossRef]
- Charati, S.; Stern, S. Diffusion of gases in silicone polymers: Molecular dynamics simulations. Macromolecules 1998, 31, 5529–5535. [Google Scholar] [CrossRef]
- Malek, K.; Sahimi, M. Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes. J. Chem. Phys. 2010, 132, 014310. [Google Scholar] [CrossRef]
- Rudyak, V.Y.; Krasnolutskii, S.L.; Ivanov, D.A. Molecular dynamics simulation of nanoparticle diffusion in dense fluids. Microfluid. Nanofluid. 2011, 11, 501–506. [Google Scholar] [CrossRef]
- Qiao, Z.; Feng, H.; Zhou, J. Molecular dynamics simulations on the melting of gold nanoparticles. Phase Transi. 2014, 87, 59–70. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, X. Molecular dynamics simulation of ethanol/water mixtures for structure and diffusion properties. Fluid Phase Equilib. 2005, 231, 1–10. [Google Scholar] [CrossRef]
- Ju, Y.Y.; Zhang, Q.M.; Gong, Z.Z.; Ji, G.F. Molecular dynamics simulation of self-diffusion coefficients for liquid metals. Chin. Phys. B 2013, 22, 083101. [Google Scholar] [CrossRef]
- Shi, C.; Alderman, O.L.; Berman, D.; Du, J.; Neuefeind, J.; Tamalonis, A.; Weber, J.R.; You, J.; Benmore, C.J. The structure of amorphous and deeply supercooled liquid alumina. Front. Mater. 2019, 6, 38. [Google Scholar] [CrossRef]
- Jahn, S.; Madden, P.A. Structure and dynamics in liquid alumina: Simulations with an ab initio interaction potential. J. Non·Cryst. Solids 2007, 353, 3500–3504. [Google Scholar] [CrossRef]
- Giacomazzi, L.; Pasquarello, A. Vibrational spectra of vitreous SiO2 and vitreous GeO2 from first principles. J. Phys. Condens. Matter 2007, 19, 415112. [Google Scholar] [CrossRef] [PubMed]
- Bell, R. The dynamics of disordered lattices. Rep. Prog. Phys. 1972, 35, 1315. [Google Scholar] [CrossRef]
- Liang, Y.; Richter, F.M.; Davis, A.M.; Watson, E.B. Diffusion in silicate melts: I. Self diffusion in CaO-Al2O3-SiO2 at 1500 °C and 1 GPa. Geochim. Cosmochim. Acta 1996, 60, 4353–4367. [Google Scholar] [CrossRef]
- Jahn, S.; Madden, P. Atomic dynamics of alumina melt: A molecular dynamics simulation study. Condens. Matter Phys. 2008, 11, 169–178. [Google Scholar] [CrossRef][Green Version]
- Arima, T.; Yamasaki, S.; Inagaki, Y.; Idemitsu, K. Evaluation of thermal properties of UO2 and PuO2 by equilibrium molecular dynamics simulations from 300 to 2000 K. J. Alloys Compd. 2005, 400, 43–50. [Google Scholar] [CrossRef]
- Alexander, J.S.; Maxwell, C.; Pencer, J.; Saoudi, M. Equilibrium molecular dynamics calculations of thermal conductivity: A “how-to” for the beginners. CNL Nucl. Rev. 2020, 9, 11–25. [Google Scholar] [CrossRef]
- Jahn, S.; Madden, P.A.; Wilson, M. Transferable interaction model for Al2O3. Phys. Rev. B 2006, 74, 024112. [Google Scholar] [CrossRef]
qα(β) | Aαβ (eV) | ραβ (Å) | σαβ (Å) | Cαβ (eV·Å6) | |
---|---|---|---|---|---|
Al | 1.8 | ||||
O | −1.2 | ||||
Al-Al | 0.0029 | 0.0680 | 1.5704 | 14.0498 | |
Al-O | 0.0075 | 0.1640 | 2.6067 | 34.5747 | |
O-O | 0.0120 | 0.2630 | 3.6430 | 85.0840 |
Density (g/cm3) | Temperature (K) | rαβ (Å) | FWHM (Å) | ||||
---|---|---|---|---|---|---|---|
Al-Al | Al-O | O-O | Al-Al | Al-O | O-O | ||
zero-pressure | 2500 | 3.1723 | 1.7657 | 2.7849 | 0.571 | 0.219 | 0.499 |
3000 | 3.1977 | 1.7618 | 2.7993 | 0.610 | 0.234 | 0.520 | |
3500 | 3.2125 | 1.7590 | 2.8021 | 0.640 | 0.247 | 0.545 | |
4000 | 3.2303 | 1.7551 | 2.8127 | 0.671 | 0.259 | 0.569 | |
2.81 | 2500 | 3.1853 | 1.7648 | 2.8006 | 0.566 | 0.218 | 0.491 |
3000 | 3.1944 | 1.7632 | 2.7922 | 0.612 | 0.235 | 0.513 | |
3500 | 3.2100 | 1.7614 | 2.7837 | 0.654 | 0.247 | 0.532 | |
4000 | 3.2066 | 1.7589 | 2.7764 | 0.684 | 0.260 | 0.553 | |
3.17 | 2500 | 3.1551 | 1.7721 | 2.7368 | 0.607 | 0.224 | 0.460 |
3000 | 3.1611 | 1.7705 | 2.7257 | 0.648 | 0.238 | 0.477 | |
3500 | 3.1743 | 1.7670 | 2.7182 | 0.674 | 0.249 | 0.491 | |
4000 | 3.1644 | 1.7653 | 2.7087 | 0.701 | 0.262 | 0.505 | |
Data from experiments, ab initio and MD simulations | |||||||
experiments | 2587 [61] | 3.09 | 1.80 | 2.76 | |||
2500 [24] | 3.25 | 1.78 ± 0.05 | 2.84 | ||||
2400 [29] | 3.15 | 1.80 | 2.82 | ||||
ab initio and MD simulations | 3000 [41] | 3.14 | 1.70 | 2.78 | |||
2500 [40] | 3.20 | 1.77 | 2.80 | ||||
2350 [62] | 3.14 | 1.73 | 2.80 |
Density (g/cm3) | Temperature (K) | Zαβ | |||
---|---|---|---|---|---|
Al-Al | Al-O | O-Al | O-O | ||
zero-pressure | 2500 | 7.83 | 4.15 | 2.76 | 10.71 |
3000 | 7.42 | 4.02 | 2.68 | 10.24 | |
3500 | 7.12 | 3.91 | 2.61 | 9.85 | |
4000 | 6.75 | 3.79 | 2.53 | 9.40 | |
2.81 | 2500 | 7.59 | 4.10 | 2.73 | 10.48 |
3000 | 7.57 | 4.06 | 2.70 | 10.37 | |
3500 | 7.53 | 3.99 | 2.66 | 10.31 | |
4000 | 7.49 | 3.94 | 2.63 | 10.26 | |
3.17 | 2500 | 8.78 | 4.36 | 2.91 | 11.61 |
3000 | 8.75 | 4.34 | 2.89 | 11.57 | |
3500 | 8.66 | 4.29 | 2.86 | 11.46 | |
4000 | 8.64 | 4.27 | 2.85 | 11.45 | |
Data from experiments, ab initio and MD simulations | |||||
experiments | 2700 [61] | 4.37 | |||
2500 [24] | 4.2 ± 0.3 | ||||
2416 [61] | 4.39 | ||||
2400 [29] | 8.85 | 4.40 | 2.93 | 12.90 | |
ab initio and MD simulations | 3000 [41] | 7.93 | 4.31 | 2.87 | 10.54 |
2500 [40] | 8.00 | 4.20 | 2.80 | 7.44 | |
2350 [62] | 4.5 |
Density (g/cm3) | Temperature (K) | Self-Diffusion Coefficients (Å2/ps) | ||
---|---|---|---|---|
Al | O | Total | ||
zero-pressure | 2500 | 0.1083 ± 0.0023 | 0.0989 ± 0.0039 | 0.1027 ± 0.0031 |
3000 | 0.3264 ± 0.0019 | 0.2972 ± 0.0037 | 0.3089 ± 0.0029 | |
3500 | 0.6047 ± 0.0028 | 0.5386 ± 0.0035 | 0.5652 ± 0.0032 | |
4000 | 0.9610 ± 0.0036 | 0.9219 ± 0.0026 | 0.9376 ± 0.0029 | |
2.81 | 2500 | 0.1205 ± 0.0017 | 0.1079 ± 0.0029 | 0.1131 ± 0.0022 |
3000 | 0.2898 ± 0.0038 | 0.2875 ± 0.0021 | 0.2886 ± 0.0025 | |
3500 | 0.5568 ± 0.0027 | 0.5359 ± 0.0024 | 0.5448 ± 0.0024 | |
4000 | 0.8367 ± 0.0042 | 0.7756 ± 0.0031 | 0.8010 ± 0.0032 | |
3.17 | 2500 | 0.0928 ±0.0038 | 0.0728 ± 0.0026 | 0.0809 ± 0.0028 |
3000 | 0.2309 ± 0.0046 | 0.1956 ± 0.0039 | 0.2099 ± 0.0041 | |
3500 | 0.4135 ±0.0029 | 0.3586 ± 0.0036 | 0.3806 ± 0.0031 | |
4000 | 0.6379 ± 0.0032 | 0.5557 ± 0.0025 | 0.5891 ± 0.0026 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zhou, Y.; Deng, Y.; Zhang, Y. Molecular Dynamics Study on Structure, Vibrational Properties, and Transport Coefficients of Liquid Alumina. Materials 2022, 15, 8370. https://doi.org/10.3390/ma15238370
Zhou X, Zhou Y, Deng Y, Zhang Y. Molecular Dynamics Study on Structure, Vibrational Properties, and Transport Coefficients of Liquid Alumina. Materials. 2022; 15(23):8370. https://doi.org/10.3390/ma15238370
Chicago/Turabian StyleZhou, Xiaolin, Yufeng Zhou, Ya Deng, and Yumin Zhang. 2022. "Molecular Dynamics Study on Structure, Vibrational Properties, and Transport Coefficients of Liquid Alumina" Materials 15, no. 23: 8370. https://doi.org/10.3390/ma15238370
APA StyleZhou, X., Zhou, Y., Deng, Y., & Zhang, Y. (2022). Molecular Dynamics Study on Structure, Vibrational Properties, and Transport Coefficients of Liquid Alumina. Materials, 15(23), 8370. https://doi.org/10.3390/ma15238370