Cu Nanowires and Nanoporous Ag Matrix Fabricated through Directional Solidification and Selective Dissolution of Ag–Cu Eutectic Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure of Ag–Cu Eutectic Alloy
3.2. Preparation of Cu Nanowires by Selective Dissolution of Ag Matrix
3.3. Preparation of Nanoporous Ag Matrix by Selective Dissolving of Cu Fiber Phase
4. Conclusions
- (1)
- With the increase in growth rate, the diameter and spacing of the Cu fiber phase decreased. When the growth rate was 14 μm/s, the Cu phase showed a long lamellar structure. With the increase in the growth rate, the Cu phase gradually changed from lamellar to fibrous. When the growth rate was 34 μm/s, the Cu phase became completely fibrous;
- (2)
- Cu nanowires were obtained by selective dissolution of the Ag matrix in 0.1 M borate buffer with a pH of 9.18 at a constant potential of 0.7 VSCE. With the extension in dissolving duration, the length of Cu nanowires increased. The length of Cu nanowires could reach more than 20 microns in 12 h, and the diameter was 200–600 nm;
- (3)
- A nanoporous Ag matrix was obtained by selective dissolution of the Cu fiber phase in 1 M acetate buffer with a pH of 6.0 at constant potential of 0.5 VSCE. With the increase in dissolving duration, the depth of the pores increased, whereas the diameter of the holes remained almost unchanged. When the dissolving duration was 12 h, the depth of the pores could reach 30 μm.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bellchambers, P.; Varagnolo, S.; Maltby, C. High-Performance Transparent Copper Grid Electrodes Fabricated by Microcontact Lithography for Organic Photovoltaics. ACS Appl. Energy Mater. 2021, 4, 4150–4155. [Google Scholar] [CrossRef]
- Joo, S.H.; Bae, J.W.; Park, W.Y. Beating Thermal Coarsening in Nanoporous Materials via High-Entropy Design. Adv. Mater. 2020, 32, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Boutry, C.M.; Negre, M.; Jorda, M. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 2018, 3, 9–14. [Google Scholar] [CrossRef]
- Son, D.; Bao, Z. Nanomaterials in Skin-Inspired Electronics: Toward Soft and Robust Skin-like Electronic Nanosystems. ACS Nano 2018, 12, 11731–11739. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shen, L.; Yuan, C.A. Molecular model for the charge carrier density dependence of conductivity ofpolyaniline as chemical sensing materials. Sens. Actuators B Chem. 2013, 177, 856–861. [Google Scholar] [CrossRef]
- Tran, N.H.; Hoang, H.M.; Duong, T.H. Using a nanosecond laser to pattern copper nanowire-based flexible electrodes: From simulation to practical application. Appl. Surf. Sci. 2020, 520, 146216. [Google Scholar] [CrossRef]
- Tran, N.H.; Nguyen, D.A.; Duong, T.H. Fast and simple fabrication of flexible and transparent electrode based on patterned copper nanowires by mechanical lithography transfer. Thin Solid Film. 2019, 685, 26–33. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.M. Nanoporous metals: Fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem. Soc. Rev. 2012, 41, 716–731. [Google Scholar] [CrossRef]
- Qiu, H.J.; Li, X.; Xu, H.T. Nanoporous metal as a platform for electrochemical and optical sensing. J. Mater. Chem. C 2014, 2, 9788–9799. [Google Scholar] [CrossRef]
- Qiu, H.J.; Xu, H.T.; Liu, L. Correlation of the structure and applications of dealloyed nanoporous metals in catalysis and energy conversion/storage. Nanoscale 2015, 7, 386–400. [Google Scholar] [CrossRef]
- Varongchayakul, N.; Huttner, D.; Grinstaff, M.W. Sensing Native Protein Solution Structures Using a Solid-state Nanopore: Unraveling the States of VEGF. Sci. Rep. 2018, 8, 1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalczyk, S.W.; Wells, D.B.; Aksimentiev, A. Slowing down DNA Translocation through a Nanopore in Lithium Chloride. Nano Lett. 2012, 12, 1038–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pate, J.; Zamora, F.; Watson, S.M.D. Solution-based DNA-templating of sub-10 nm conductive copper nanowires. J. Mater. Chem. C 2014, 2, 9256–9273. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, Y.; Li, Y. A flexible chemical vapor deposition method to synthesize copper@carbon core-shell structured nanowires and the study of their structural electrical properties. New J. Chem. 2012, 36, 1161–1169. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Zhang, M.; Wang, F.X. Facile microwave-assisted synthesis of uniform Sb2Se3 nanowires for high performance photodetectors. J. Mater. Chem. C 2013, 2, 240–244. [Google Scholar] [CrossRef]
- Liu, W.; Chen, L.; Yan, J. Dealloying solution dependence of fabrication, microstructure and porosity of hierarchical structured nanoporous copper ribbons. Corros. Sci. 2015, 94, 114–121. [Google Scholar] [CrossRef]
- Gao, Y.; Ding, Y. Nanoporous Metals for Heterogeneous Catalysis: Following the Success of Raney Nickel. Chem. A Eur. J. 2020, 26, 8845–8856. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Qi, Z. Generalized Fabrication of Nanoporous Metals (Au, Pd, Pt, Ag, and Cu) through Chemical Dealloying. J. Phys. Chem. C 2009, 113, 12629–12636. [Google Scholar] [CrossRef]
- Joo, S.H.; Kato, H. 3D interconnected nanoporous feco soft magnetic materials synthesized by liquid metal dealloying. J. Alloy. Compd. 2022, 908, 164688–164696. [Google Scholar] [CrossRef]
- Wang, X.; Feng, J.; Hou, F.; Dong, L. Hundred-gram scale fabrication of few-layered silicene by a continuous vapor-dealloying strategy for high-performance lithium storage. Chem. Commun. 2022, 58, 5717–5720. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X. Research progress of directionally solidified porous metals. Acta Metall. Sin. 2018, 54, 727–741. [Google Scholar]
- Rodriguez, B.B.; Smith, A.J.; Hassel, A.W. Electrodeposition of gold on tungsten nanowires present in NiAl-W eutectics. J. Electroanal. Chem. 2008, 618, 11–16. [Google Scholar] [CrossRef]
- Sakai, Y.; Schneider-Muntau, H.J. Ultra-high strength, high conductivity Cu-Ag alloy wires. Acta Mater. 1997, 45, 1017–1023. [Google Scholar] [CrossRef]
- Li, R.; Zuo, X.; Wang, E. Influence of thermomechanical process and Fe addition on microstructural evolution and properties of Cu-26 wt%Ag composite. J. Alloy. Compd. 2019, 773, 121–130. [Google Scholar] [CrossRef]
- Zuo, X.; Han, K.; Zhao, C. Microstructure and properties of nanostructured Cu28 wt%Ag microcomposite deformed after solidifying under a high magnetic field. Mater. Sci. Eng. 2014, 619, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Hassel, A.W.; Bello-Rodriguez, B.; Milenkovic, S. Electrochemical production of nanopore arrays in a nickel aluminium alloy. Electrochim. Acta 2005, 50, 3033–3039. [Google Scholar] [CrossRef]
- Milenkovic, S.; Hassel, A.W. Spatial features control of self-organised tungsten nanowire arrays. Phys. Status Solidi 2009, 206, 455–461. [Google Scholar] [CrossRef]
- Frankel, D.; Milenkovic, S.; Smith, A.J.; Hassel, A.W. Nanostructuring of NiAl-Mo eutectic alloys by selective phase dissolution. Electrochim. Acta 2009, 54, 6015–6021. [Google Scholar] [CrossRef]
- Gao, J.; Jian, L.; Geng, H.; Cui, K.; Zhao, Z.; Liu, L. Morphologies, Young’s Modulus and Resistivity of High Aspect Ratio Tungsten Nanowires. Materials 2020, 13, 3749. [Google Scholar] [CrossRef]
- Lufeng, W.; Yanfang, H.; Zhilong, Z.; Lin, L. Review on Preparation of Micro/nanostructures by Selective Phase Dissolution. Rare Met. Mater. Eng. 2020, 49, 539–2548. [Google Scholar]
- Zhao, Z.; Gao, J.; Wei, L. Investigation on Preparation of Nanoporous Arrays of NiAl-W. Mater. Rev. 2017, 18, 25–27. [Google Scholar]
- Wei, L.; Zhao, Z.; Gao, J.; Cui, K.; Chen, S.; Guo, J.; Liu, L. Lamellar Ni3Si Microchannels and Ni3Si Micropore Arrays in Ni-Ni3Si Hypereutectic Alloys. J. Electrochem. Soc. 2018, 165, 45–49. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, Z.; Wei, L. Nanoporous NiAl Matrix Fabricated through Directional Solidification and Pulsed Electrochemical Dissolution. J. Electrochem. Soc. 2017, 164, 474–480. [Google Scholar] [CrossRef]
- Brittman, S.; Smith, A.J.; Milenkovic, S. Copper nanowires and silver micropit arrays from the electrochemical treatment of a directionally solidified silver-copper eutectic. Electrochim. Acta 2007, 53, 324–329. [Google Scholar] [CrossRef]
- Fenster, C.; Smith, A.J.; André, A. Single tungsten nanowires as pH sensitive electrodes. Electrochem. Commun. 2008, 10, 1125–1128. [Google Scholar] [CrossRef]
- Gao, J.; Luo, J.; Geng, H. Coral-flake Co particles electrodeposited into the porous NiAl matrix. Mater. Chem. Phys. 2020, 244, 122594. [Google Scholar] [CrossRef]
- Jackson, K.A.; Hunt, J.D.; Jackson, K.H. Lamellar and Rod Eutectic Growth. Trans. Metall. Soc. AIME 1966, 236, 1129–1142. [Google Scholar]
Dissolution Duration | Pore Diameter (nm) | Dissolving Depth (μm) |
---|---|---|
2 h | 4 h | 8 h |
490.9 | 549.5 | 751.7 |
9.10 | 14.64 | 26.71 |
Test Points | Element | Mass Fraction (%) |
---|---|---|
*1 | Ag | 83.76 |
Cu | 16.24 | |
O | / | |
*2 | Ag | 81.33 |
Cu | 9.85 | |
O | 8.82 | |
*3 | Ag | 78.38 |
Cu | 9.26 | |
O | 12.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Gao, J.; Qin, H.; Liu, Z.; Zhu, L.; Geng, H.; Yao, L.; Zhao, Z. Cu Nanowires and Nanoporous Ag Matrix Fabricated through Directional Solidification and Selective Dissolution of Ag–Cu Eutectic Alloys. Materials 2022, 15, 8189. https://doi.org/10.3390/ma15228189
Xu J, Gao J, Qin H, Liu Z, Zhu L, Geng H, Yao L, Zhao Z. Cu Nanowires and Nanoporous Ag Matrix Fabricated through Directional Solidification and Selective Dissolution of Ag–Cu Eutectic Alloys. Materials. 2022; 15(22):8189. https://doi.org/10.3390/ma15228189
Chicago/Turabian StyleXu, Jiaxing, Jianjun Gao, Hongling Qin, Zhiyang Liu, Linpeng Zhu, Haibin Geng, Ligang Yao, and Zhilong Zhao. 2022. "Cu Nanowires and Nanoporous Ag Matrix Fabricated through Directional Solidification and Selective Dissolution of Ag–Cu Eutectic Alloys" Materials 15, no. 22: 8189. https://doi.org/10.3390/ma15228189
APA StyleXu, J., Gao, J., Qin, H., Liu, Z., Zhu, L., Geng, H., Yao, L., & Zhao, Z. (2022). Cu Nanowires and Nanoporous Ag Matrix Fabricated through Directional Solidification and Selective Dissolution of Ag–Cu Eutectic Alloys. Materials, 15(22), 8189. https://doi.org/10.3390/ma15228189