A New Insight into the Mechanisms Underlying the Discoloration, Sorption, and Photodegradation of Methylene Blue Solutions with and without BNOx Nanocatalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Materials Characterization
2.3. Spectrophotometric Measurements
2.4. Discoloration and Photocatalytic Measurements
2.5. Computational Methods
3. Results and Discussion
3.1. Spectrophotometry of MB Solutions
3.2. Discoloration of MB Solutions under Visible Light and Sunlight
3.3. BNOx Photocatalyst
3.4. Computational Analysis of MB Sorption on BNOx
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Tardivo, J.P.; Del Giglio, A.; de Oliveira, C.S.; Gabrielli, D.S.; Junqueira, H.C.; Tada, D.B.; Severino, D.; de Fátima Turchiello, R.; Baptista, M.S. Methylene Blue in Photodynamic Therapy: From Basic Mechanisms to Clinical Applications. Photodiagnosis Photodyn. Ther. 2005, 2, 175–191. [Google Scholar] [CrossRef]
- Dos Santos, A.F.; Terra, L.F.; Wailemann, R.A.M.; Oliveira, T.C.; Gomes, V.d.M.; Mineiro, M.F.; Meotti, F.C.; Bruni-Cardoso, A.; Baptista, M.S.; Labriola, L. Methylene Blue Photodynamic Therapy Induces Selective and Massive Cell Death in Human Breast Cancer Cells. BMC Cancer 2017, 17, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisco, C.M.L.; Gonçalves, J.M.L.A.; Brum, B.S.; Santos, T.P.C.; Lino-dos-Santos-Franco, A.; Silva, D.F.T.; Pavani, C. The Photodynamic Efficiency of Phenothiazinium Dyes Is Aggregation Dependent. New J. Chem. 2017, 41, 14438–14443. [Google Scholar] [CrossRef]
- Coronel, A.; Catalán-Toledo, J.; Fernández-Jaramillo, H.; Godoy-Martínez, P.; Flores, M.E.; Moreno-Villoslada, I. Photodynamic Action of Methylene Blue Subjected to Aromatic-Aromatic Interactions with Poly(Sodium 4-Styrenesulfonate) in Solution and Supported in Solid, Highly Porous Alginate Sponges. Dyes Pigments 2017, 147, 455–464. [Google Scholar] [CrossRef]
- Cwalinski, T.; Polom, W.; Marano, L.; Roviello, G.; D’Angelo, A.; Cwalina, N.; Matuszewski, M.; Roviello, F.; Jaskiewicz, J.; Polom, K. Methylene Blue—Current Knowledge, Fluorescent Properties, and Its Future Use. J. Clin. Med. 2020, 9, 3538. [Google Scholar] [CrossRef]
- Bayomie, O.S.; Kandeel, H.; Shoeib, T.; Yang, H.; Youssef, N.; El-Sayed, M.M.H. Novel Approach for Effective Removal of Methylene Blue Dye from Water Using Fava Bean Peel Waste. Sci. Rep. 2020, 10, 7824. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of Methylene Blue on Low-Cost Adsorbents: A Review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef]
- El Messaoudi, N.; El Khomri, M.; Fernine, Y.; Bouich, A.; Lacherai, A.; Jada, A.; Sher, F.; Lima, E.C. Hydrothermally Engineered Eriobotrya Japonica Leaves/MgO Nanocomposites with Potential Applications in Wastewater Treatment. Groundw. Sustain. Dev. 2022, 16, 100728. [Google Scholar] [CrossRef]
- Elmorsi, R.R.; El-Wakeel, S.T.; Shehab El-Dein, W.A.; Lotfy, H.R.; Rashwan, W.E.; Nagah, M.; Shaaban, S.A.; Sayed Ahmed, S.A.; El-Sherif, I.Y.; Abou-El-Sherbini, K.S. Adsorption of Methylene Blue and Pb2+ by Using Acid-Activated Posidonia Oceanica Waste. Sci. Rep. 2019, 9, 3356. [Google Scholar] [CrossRef]
- Loutfi, M.; Mariouch, R.; Mariouch, I.; Belfaquir, M.; ElYoubi, M.S. Adsorption of Methylene Blue Dye from Aqueous Solutions onto Natural Clay: Equilibrium and Kinetic Studies. Mater. Today Proc. 2022, in press. [Google Scholar] [CrossRef]
- Aragaw, T.A.; Alene, A.N. A Comparative Study of Acidic, Basic, and Reactive Dyes Adsorption from Aqueous Solution onto Kaolin Adsorbent: Effect of Operating Parameters, Isotherms, Kinetics, and Thermodynamics. Emerg. Contam. 2022, 8, 59–74. [Google Scholar] [CrossRef]
- Foroutan, R.; Peighambardoust, S.J.; Latifi, P.; Ahmadi, A.; Alizadeh, M.; Ramavandi, B. Carbon Nanotubes/β-Cyclodextrin/MnFe2O4 as a Magnetic Nanocomposite Powder for Tetracycline Antibiotic Decontamination from Different Aqueous Environments. J. Environ. Chem. Eng. 2021, 9, 106344. [Google Scholar] [CrossRef]
- Peighambardoust, S.J.; Foroutan, R.; Peighambardoust, S.H.; Khatooni, H.; Ramavandi, B. Decoration of Citrus Limon Wood Carbon with Fe3O4 to Enhanced Cd2+ Removal: A Reclaimable and Magnetic Nanocomposite. Chemosphere 2021, 282, 131088. [Google Scholar] [CrossRef]
- Foroutan, R.; Zareipour, R.; Mohammadi, R. Fast Adsorption of Chromium (VI) Ions from Synthetic Sewage Using Bentonite and Bentonite/Bio-Coal Composite: A Comparative Study. Mater. Res. Express 2018, 6, 025508. [Google Scholar] [CrossRef]
- Li, J.; Xiao, X.; Xu, X.; Lin, J.; Huang, Y.; Xue, Y.; Jin, P.; Zou, J.; Tang, C. Activated Boron Nitride as an Effective Adsorbent for Metal Ions and Organic Pollutants. Sci. Rep. 2013, 3, 3208. [Google Scholar] [CrossRef] [Green Version]
- Marchesini, S.; Wang, X.; Petit, C. Porous Boron Nitride Materials: Influence of Structure, Chemistry and Stability on the Adsorption of Organics. Front. Chem. 2019, 7, 160. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Di, J.; Zhu, W.; Li, H. Hexagonal Boron Nitride Adsorbent: Synthesis, Performance Tailoring and Applications. J. Energy Chem. 2020, 40, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Din, M.I.; Khalid, R.; Najeeb, J.; Hussain, Z. Fundamentals and Photocatalysis of Methylene Blue Dye Using Various Nanocatalytic Assemblies- a Critical Review. J. Clean. Prod. 2021, 298, 126567. [Google Scholar] [CrossRef]
- Matveev, A.T.; Konopatsky, A.S.; Leybo, D.V.; Volkov, I.N.; Kovalskii, A.M.; Varlamova, L.A.; Sorokin, P.B.; Fang, X.; Kulinich, S.A.; Shtansky, D.V. Amorphous MoSxOy/h-BNxOy Nanohybrids: Synthesis and Dye Photodegradation. Nanomaterials 2021, 11, 3232. [Google Scholar] [CrossRef]
- Yan, X.; Ohno, T.; Nishijima, K.; Abe, R.; Ohtani, B. Is Methylene Blue an Appropriate Substrate for a Photocatalytic Activity Test? A Study with Visible-Light Responsive Titania. Chem. Phys. Lett. 2006, 429, 606–610. [Google Scholar] [CrossRef] [Green Version]
- Sáenz-Trevizo, A.; Pizá-Ruiz, P.; Chávez-Flores, D.; Ogaz-Parada, J.; Amézaga-Madrid, P.; Vega-Ríos, A.; Miki-Yoshida, M. On the Discoloration of Methylene Blue by Visible Light. J. Fluoresc. 2019, 29, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Matveev, A.T.; Permyakova, E.S.; Kovalskii, A.M.; Leibo, D.; Shchetinin, I.V.; Maslakov, K.I.; Golberg, D.V.; Shtansky, D.V.; Konopatsky, A.S. New Insights into Synthesis of Nanocrystalline Hexagonal BN. Ceram. Int. 2020, 46, 19866–19872. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Shimojo, F.; Hoshino, K.; Zempo, Y. Ab Initio Molecular-Dynamics Simulation Method for Complex Liquids. Comput. Phys. Commun. 2001, 142, 364–367. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Fernández-Pérez, A.; Marbán, G. Visible Light Spectroscopic Analysis of Methylene Blue in Water; What Comes after Dimer? ACS Omega 2020, 5, 29801–29815. [Google Scholar] [CrossRef]
- Fernández-Pérez, A.; Valdés-Solís, T.; Marbán, G. Visible Light Spectroscopic Analysis of Methylene Blue in Water; the Resonance Virtual Equilibrium Hypothesis. Dyes Pigments 2019, 161, 448–456. [Google Scholar] [CrossRef]
- Heger, D.; Jirkovský, J.; Klán, P. Aggregation of Methylene Blue in Frozen Aqueous Solutions Studied by Absorption Spectroscopy. J. Phys. Chem. A 2005, 109, 6702–6709. [Google Scholar] [CrossRef]
- Braswell, E. Evidence for Trimerization in Aqueous Solutions of Methylene Blue. J. Phys. Chem. 1968, 72, 2477–2483. [Google Scholar] [CrossRef]
- Lee, S.-K.; Mills, A. Luminescence of Leuco-Thiazine Dyes. J. Fluoresc. 2003, 13, 375–377. [Google Scholar] [CrossRef]
- Yuzhakov, V.I. Association of Dye Molecules and Its Spectroscopic Manifestation. Russ. Chem. Rev. 1979, 48, 1076–1091. [Google Scholar] [CrossRef]
- Tsuchiya, N.; Kuwabara, K.; Hidaka, A.; Oda, K.; Katayama, K. Reaction Kinetics of Dye Decomposition Processes Monitored inside a Photocatalytic Microreactor. Phys. Chem. Chem. Phys. 2012, 14, 4734. [Google Scholar] [CrossRef]
- Lobyshev, V.I.; Shikhlinskaya, R.E.; Ryzhikov, B.D. Experimental Evidence for Intrinsic Luminescence of Water. J. Mol. Liq. 1999, 82, 73–81. [Google Scholar] [CrossRef]
- Shaopu, L.; Zhongfang, L.; Ming, L. Analytical Application of Double Scattering Spectra of Double Scattering Spectra of Ion-Association Complex 1: Selenium (IV)-I^-Rhodamine B System. Acta Chim. Sin. 1995, 53, 1178. [Google Scholar]
- Luo, H.Q.; Liu, S.P.; Li, N.B.; Liu, Z.F. Resonance Rayleigh Scattering, Frequency Doubling Scattering and Second-Order Scattering Spectra of the Heparin–Crystal Violet System and Their Analytical Application. Anal. Chim. Acta 2002, 468, 275–286. [Google Scholar] [CrossRef]
- Long, X.; Zhang, H.; Bi, S. Frequency Doubling Scattering and Second-Order Scattering Spectra of Phosphato-Molybdate Heteroply Acid–Protein System and Their Analytical Application. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2004, 60, 1631–1636. [Google Scholar] [CrossRef]
- Liu, J.F.; Li, N.B.; Luo, H.Q. Resonance Rayleigh Scattering, Second-Order Scattering and Frequency Doubling Scattering Spectra for Studying the Interaction of Erythrosine with and Its Analytical Application. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2011, 79, 631–637. [Google Scholar] [CrossRef]
- Zhou, J.-F.; Li, N.-B.; Luo, H.-Q. Analytical Application of Resonance Rayleigh Scattering, Frequency Doubling Scattering, and Second-Order Scattering Spectra for the Sodium Alginate-CTAB System. Anal. Lett. 2011, 44, 637–647. [Google Scholar] [CrossRef]
- Morozova, M.A.; Tumasov, V.N.; Kazimova, I.V.; Maksimova, T.V.; Uspenskaya, E.V.; Syroeshkin, A.V. Second-Order Scattering Quenching in Fluorescence Spectra of Natural Humates as a Tracer of Formation Stable Supramolecular System for the Delivery of Poorly Soluble Antiviral Drugs on the Example of Mangiferin and Favipiravir. Pharmaceutics 2022, 14, 767. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, S.; Lin, X. New Insights on Degradation of Methylene Blue Using Thermocatalytic Reactions Catalyzed by Low-Temperature Excitation. J. Hazard. Mater. 2013, 260, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, J.-M. Fundamentals and Misconceptions in Photocatalysis. J. Photochem. Photobiol. Chem. 2010, 216, 85–93. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Moon, J.H.; Choi, Y.S.; Park, G.O.; Jin, M.; Jin, L.Y.; Li, D.; Lee, J.Y.; Son, S.U.; Kim, J.M. Visible-Light Driven Photocatalytic Degradation of Organic Dyes over Ordered Mesoporous CdxZn1–xS Materials. J. Phys. Chem. C 2017, 121, 5137–5144. [Google Scholar] [CrossRef]
- Junqueira, H.C.; Severino, D.; Dias, L.G.; Gugliotti, M.S.; Baptista, M.S. Modulation of Methylene Blue Photochemical Properties Based on Adsorption at Aqueous Micelle Interfaces. Phys. Chem. Chem. Phys. 2002, 4, 2320–2328. [Google Scholar] [CrossRef]
- Barakat, N.A.M.; Tolba, G.M.K.; Khalil, K.A. Methylene Blue Dye as Photosensitizer for Scavenger-Less Water Photo Splitting: New Insight in Green Hydrogen Technology. Polymers 2022, 14, 523. [Google Scholar] [CrossRef]
- Yu, Z.; Chuang, S.S.C. Probing Methylene Blue Photocatalytic Degradation by Adsorbed Ethanol with In Situ IR. J. Phys. Chem. C 2007, 111, 13813–13820. [Google Scholar] [CrossRef]
- Rauf, M.A.; Meetani, M.A.; Khaleel, A.; Ahmed, A. Photocatalytic Degradation of Methylene Blue Using a Mixed Catalyst and Product Analysis by LC/MS. Chem. Eng. J. 2010, 157, 373–378. [Google Scholar] [CrossRef]
- Mills, A.; Hazafy, D.; Parkinson, J.; Tuttle, T.; Hutchings, M.G. Effect of Alkali on Methylene Blue (C.I. Basic Blue 9) and Other Thiazine Dyes. Dyes Pigments 2011, 88, 149–155. [Google Scholar] [CrossRef]
- Mondal, S.; Reyes, M.E.D.A.; Pal, U. Plasmon Induced Enhanced Photocatalytic Activity of Gold Loaded Hydroxyapatite Nanoparticles for Methylene Blue Degradation under Visible Light. RSC Adv. 2017, 7, 8633–8645. [Google Scholar] [CrossRef] [Green Version]
- Shtansky, D.V.; Tsuda, O.; Ikuhara, Y.; Yoshida, T. Crystallography and Structural Evolution of Cubic Boron Nitride Films during Bias Sputter Deposition. Acta Mater. 2000, 48, 3745–3759. [Google Scholar] [CrossRef]
- Makarova, A.A.; Fernandez, L.; Usachov, D.Y.; Fedorov, A.; Bokai, K.A.; Smirnov, D.A.; Laubschat, C.; Vyalikh, D.V.; Schiller, F.; Ortega, J.E. Oxygen Intercalation and Oxidation of Atomically Thin H-BN Grown on a Curved Ni Crystal. J. Phys. Chem. C 2019, 123, 593–602. [Google Scholar] [CrossRef]
- Weng, Q.; Kvashnin, D.G.; Wang, X.; Cretu, O.; Yang, Y.; Zhou, M.; Zhang, C.; Tang, D.-M.; Sorokin, P.B.; Bando, Y.; et al. Tuning of the Optical, Electronic, and Magnetic Properties of Boron Nitride Nanosheets with Oxygen Doping and Functionalization. Adv. Mater. 2017, 29, 1700695. [Google Scholar] [CrossRef] [Green Version]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.Z.; Tang, G.-Q. The Binding Properties of Photosensitizer Methylene Blue to Herring Sperm DNA: A Spectroscopic Study. J. Photochem. Photobiol. B 2004, 74, 119–125. [Google Scholar] [CrossRef]
- Fisher, A.M.R.; Murphree, A.L.; Gomer, C.J. Clinical and Preclinical Photodynamic Therapy. Lasers Surg. Med. 1995, 17, 2–31. [Google Scholar] [CrossRef]
- Wainwright, M. The Emerging Chemistry of Blood Product Disinfection. Chem. Soc. Rev. 2002, 31, 128–136. [Google Scholar] [CrossRef]
- Wainwright, M. Phenothiazinium Photosensitisers: Choices in Synthesis and Application. Dyes Pigments 2003, 57, 245–257. [Google Scholar] [CrossRef]
- Kearns, D.R. Physical and Chemical Properties of Singlet Molecular Oxygen. Chem. Rev. 1971, 71, 395–427. [Google Scholar] [CrossRef]
- Wasserman, H.H.; Scheffer, J.R.; Cooper, J.L. Singlet Oxygen Reactions with 9,10-Diphenylanthracene Peroxide. J. Am. Chem. Soc. 1972, 94, 4991–4996. [Google Scholar] [CrossRef]
- Poorsajadi, F.; Sayadi, M.H.; Hajiani, M.; Rezaei, M.R. Synthesis of CuO/Bi2O3 Nanocomposite for Efficient and Recycling Photodegradation of Methylene Blue Dye. Int. J. Environ. Anal. Chem. 2020, 1–14. [Google Scholar] [CrossRef]
- Faisal, M.; Harraz, F.A.; Jalalah, M.; Alsaiari, M.; Al-Sayari, S.A.; Al-Assiri, M.S. Polythiophene Doped ZnO Nanostructures Synthesized by Modified Sol-Gel and Oxidative Polymerization for Efficient Photodegradation of Methylene Blue and Gemifloxacin Antibiotic. Mater. Today Commun. 2020, 24, 101048. [Google Scholar] [CrossRef]
- Albiss, B.; Abu-Dalo, M. Photocatalytic Degradation of Methylene Blue Using Zinc Oxide Nanorods Grown on Activated Carbon Fibers. Sustainability 2021, 13, 4729. [Google Scholar] [CrossRef]
- Sanad, M.M.S.; Farahat, M.M.; El-Hout, S.I.; El-Sheikh, S.M. Preparation and Characterization of Magnetic Photocatalyst from the Banded Iron Formation for Effective Photodegradation of Methylene Blue under UV and Visible Illumination. J. Environ. Chem. Eng. 2021, 9, 105127. [Google Scholar] [CrossRef]
- Wei, X.; Wang, X.; Pu, Y.; Liu, A.; Chen, C.; Zou, W.; Zheng, Y.; Huang, J.; Zhang, Y.; Yang, Y.; et al. Facile Ball-Milling Synthesis of CeO2/g-C3N4 Z-Scheme Heterojunction for Synergistic Adsorption and Photodegradation of Methylene Blue: Characteristics, Kinetics, Models, and Mechanisms. Chem. Eng. J. 2021, 420, 127719. [Google Scholar] [CrossRef]
Sample | Content, at. % | ||
---|---|---|---|
B | N | O | |
BNO1 | 48.0 | 44.8 | 6.5 |
BNO2 | 47.7 | 46.6 | 4.2 |
Photocatalyst | Light Source | %MB Degraded@Time | Reference |
---|---|---|---|
CuO/Bi2O3 Nanocomposite | UV-C irradiation | 88.32%@120 min | [60] |
5% PTh/ZnO | 250 W high-pressure mercury lamp | 95%@180 min | [61] |
ZnO-NR/ACF Nanocomposites | UV irradiation | 99%@120 min | [62] |
γ-Fe3/Fe3O4/SiO2 (Ar modified) | UV irradiation | 87.5%@120 min | [63] |
70% CeO2/g-C3N4 Z-scheme Heterojunction | UV irradiation | 90.1%@180 min | [64] |
BNOx nanoparticles | 50 W low-pressure mercury lamp | 100%@45 min | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matveev, A.T.; Varlamova, L.A.; Konopatsky, A.S.; Leybo, D.V.; Volkov, I.N.; Sorokin, P.B.; Fang, X.; Shtansky, D.V. A New Insight into the Mechanisms Underlying the Discoloration, Sorption, and Photodegradation of Methylene Blue Solutions with and without BNOx Nanocatalysts. Materials 2022, 15, 8169. https://doi.org/10.3390/ma15228169
Matveev AT, Varlamova LA, Konopatsky AS, Leybo DV, Volkov IN, Sorokin PB, Fang X, Shtansky DV. A New Insight into the Mechanisms Underlying the Discoloration, Sorption, and Photodegradation of Methylene Blue Solutions with and without BNOx Nanocatalysts. Materials. 2022; 15(22):8169. https://doi.org/10.3390/ma15228169
Chicago/Turabian StyleMatveev, Andrei T., Liubov A. Varlamova, Anton S. Konopatsky, Denis V. Leybo, Ilia N. Volkov, Pavel B. Sorokin, Xiaosheng Fang, and Dmitry V. Shtansky. 2022. "A New Insight into the Mechanisms Underlying the Discoloration, Sorption, and Photodegradation of Methylene Blue Solutions with and without BNOx Nanocatalysts" Materials 15, no. 22: 8169. https://doi.org/10.3390/ma15228169