Biofunctional Layered Double Hydroxide Nanohybrids for Cancer Therapy
Abstract
:1. Introduction
2. Preparation Methods for LDH Nanohybrids as Therapeutic Materials
3. Therapeutic Bioapplications with LDH Nanohybrids
3.1. Gene Therapy
3.2. Chemotherapy
3.3. Immunotherapy
3.4. Combination Therapy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oh, J.-M.; Park, D.-H.; Choy, J.-H. Integrated bio-inorganic hybrid systems for nano-forensics. Chem. Soc. Rev. 2011, 40, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Senapati, S.; Mahanta, K.A.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018, 3, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, D.-H.; Hwang, S.-J.; Oh, J.-M.; Yang, J.-H.; Choy, J.-H. Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Prog. Polym. Sci. 2013, 38, 1442–1486. [Google Scholar] [CrossRef]
- Hochstetter, C. Untersuchung über die Zusammensetzung einiger Mineralien. J. Prakt. Chem. 1842, 27, 375–378. [Google Scholar] [CrossRef]
- Feitknecht, W.; Gerber, M. Zur Kenntnis Der Doppelhydroxyde Und Basischen Doppelsalze III. Über Magnesium-Aluminiumdoppelhydroxyd. Helv. Chim. Acta 1942, 25, 131–137. [Google Scholar] [CrossRef]
- Chen, B.-Q.; Xia, H.-Y.; Mende, L.K.; Lee, C.-H.; Wang, S.-B.; Chen, A.-Z.; Xu, Z.-P.; Kankala, R.K. Trends in Layered Double Hydroxides-Based Advanced Nanocomposites: Recent Progress and Latest Advancements. Adv. Mater. Interfaces 2022, 9, 2200373. [Google Scholar] [CrossRef]
- Sharma, R.; Bhawna, K.; Sanjeev, S.; Poonam, G.; Akanksha, K. Layered Double Hydroxide Nanomaterials: Biomedical Applications, Current Status and Challenges. Nano Life 2021, 11, 2130008. [Google Scholar] [CrossRef]
- Ma, B.; Bianco, A. Recent Advances in 2D Material-Mediated Immuno-Combined Cancer Therapy. Small 2021, 17, 2102557. [Google Scholar] [CrossRef]
- Manisekaran, R.; García-Contreras, R.; Rasu Chettiar, A.-D.; Serrano-Díaz, P.; Lopez-Ayuso, C.A.; Arenas-Arrocena, M.C.; Hernández-Padrón, G.; López-Marín, L.M.; Acosta-Torres, L.S. 2D Nanosheets—A New Class of Therapeutic Formulations against Cancer. Pharmaceutics 2021, 13, 1803. [Google Scholar] [CrossRef]
- Jin, W.; Park, D.-H. Functional Layered Double Hydroxide Nanohybrids for Biomedical Imaging. Nanomaterials 2019, 9, 1404. [Google Scholar] [CrossRef]
- Jin, W.; Lee, D.; Jeon, Y.; Park, D.-H. Biocompatible Hydrotalcite Nanohybrids for Medical Functions. Minerals 2020, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Choi, G.; Eom, S.; Vinu, A.; Choy, J.-H. 2D Nanostructured Metal Hydroxides with Gene Delivery and Theranostic Functions; A Comprehensive Review. Chem. Rec. 2018, 18, 1033–1053. [Google Scholar] [CrossRef] [PubMed]
- Arrabito, G.; Bonasera, A.; Prestopino, G.; Orsini, A.; Mattoccia, A.; Martinelli, E.; Pignataro, B.; Medaglia, P.G. Layered Double Hydroxides: A Toolbox for Chemistry and Biology. Crystals 2019, 9, 361. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Bharadiya, P.; Hansora, D. Layered double hydroxide based bionanocomposites. Appl. Clay Sci. 2019, 177, 19–36. [Google Scholar] [CrossRef]
- Biswick, T.; Park, D.-H.; Shul, Y.-G.; Choy, J.-H. P-coumaric acid–zinc basic salt nanohybrid for controlled release and sustained antioxidant activity. J. Phys. Chem. Solids 2010, 71, 647–649. [Google Scholar] [CrossRef]
- Park, D.-H.; Choi, G.; Choy, J.-H. Bio-Layered Double Hydroxides Nanohybrids for Theranostics Applications. In Photofunctional Layered Materials. Structure and Bonding; Springer: Cham, Swizerland, 2015; Volume 166, pp. 137–175. [Google Scholar]
- Kim, J.Y.; Yang, J.H.; Lee, J.H.; Choi, G.; Park, D.H.; Jo, M.R.; Choi, S.J.; Choy, J.H. 2D Inorganic–Antimalarial Drug–Polymer Hybrid with pH-Responsive Solubility. Chem. Asian J. 2015, 10, 2264–2271. [Google Scholar] [CrossRef]
- Jin, W.; Ha, S.; Myung, J.-H.; Kim, B.C.; Park, D.-H. Ceramic layered double hydroxide nanohybrids for therapeutic applications. J. Korean Ceram. Soc. 2020, 57, 597–607. [Google Scholar] [CrossRef]
- Hu, T.; Gu, Z.; Williams, G.R.; Strimaite, M.; Zha, J.; Zhou, Z.; Zhang, X.; Tan, C.; Liang, R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem. Soc. Rev. 2022, 51, 6126–6176. [Google Scholar] [CrossRef]
- Jing, G.; Yang, L.; Wang, H.; Niu, J.; Li, Y.; Wang, S. Interference of layered double hydroxide nanoparticles with pathways for biomedical applications. Adv. Drug Deliv. Rev. 2022, 188, 114451. [Google Scholar] [CrossRef]
- Yan, L.; Gonca, S.; Zhu, G.; Zhang, W.; Chen, X. Layered double hydroxide nanostructures and nanocomposites for biomedical applications. J. Mater. Chem. B 2019, 7, 5583. [Google Scholar] [CrossRef]
- Biswick, T.; Park, D.-H.; Choy, J.-H. Enhancing the UV A1 screening ability of caffeic acid by encapsulation in layered basic zinc hydroxide matrix. J. Phys. Chem. Solids 2012, 73, 1510–1513. [Google Scholar] [CrossRef]
- Choy, J.-H.; Kwak, S.-Y.; Park, J.-S.; Jeong, Y.-J.; Portier, J. Intercalative Nanohybrids of Nucleoside Monophosphates and DNA in Layered Metal Hydroxide. J. Am. Chem. Soc. 1999, 121, 1399–1400. [Google Scholar] [CrossRef]
- Choy, J.-H.; Kwak, S.-Y.; Jeong, Y.-J.; Park, J.-S. Inorganic Layered Double Hydroxides as Nonviral Vectors. Angew. Chem. Int. Ed. 2000, 39, 4041–4045. [Google Scholar] [CrossRef]
- Oh, J.-M.; Park, D.-H.; Choi, S.-J.; Choy, J.-H. LDH nanocontainers as bio-reservoirs and drug delivery carriers. Recent Pat. Nanotech. 2012, 6, 200–217. [Google Scholar] [CrossRef] [PubMed]
- Choy, J.-H.; Jung, J.-S.; Oh, J.-M.; Park, M.; Jeong, J.; Kang, Y.-K.; Han, O.-J. Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials 2004, 25, 3059–3064. [Google Scholar] [CrossRef]
- Yan, S.; Rolfe, B.E.; Zhang, B.; Mohammed, Y.H.; Gu, W.; Xu, Z.P. Polarized immune responses modulated by layered double hydroxides nanoparticle conjugated with CpG. Biomaterials 2014, 35, 9508–9516. [Google Scholar] [CrossRef]
- Li, L.; Gu, Z.; Gu, W.Y.; Xu, Z.P. Direct synthesis of layered double hydroxide nanosheets for efficient siRNA delivery. RSC Adv. 2016, 6, 95518. [Google Scholar] [CrossRef]
- Park, D.-H.; Kim, J.-E.; Oh, J.-M.; Shul, Y.-G.; Choy, J.-H. DNA Core@Inorganic Shell. J. Am. Chem. Soc. 2010, 132, 16735–16736. [Google Scholar] [CrossRef]
- Lin, C.-W.; Lin, S.-X.; Kankala, R.K.; Busa, P.; Deng, J.-P.; Lue, S.-I.; Liu, C.-L.; Weng, C.-F.; Lee, C.-H. Surface-Functionalized Layered Double Hydroxide Nanocontainers as Bile Acid Sequestrants for Lowering Hyperlipidemia. Int. J. Pharm. 2020, 590, 119921. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, J.Y.; Kim, T.-H.; Gwak, G.-H.; Park, J.H.; Oh, J.-M. Radioisotope and anticancer agent incorporated layered double hydroxide for tumor targeting theranostic nanomedicine. Appl. Clay Sci. 2020, 186, 105454. [Google Scholar] [CrossRef]
- Li, L.; Qian, Y.; Sun, L.; Han, F.Y.; Zhang, R.; Wang, P.Y.; Xu, Z.P. Albumin-stabilized layered double hydroxide nanoparticles synergized combination chemotherapy for colorectal cancer treatment. Nanomed. Nanotechnol. Biol. Med. 2021, 34, 102369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-X.; Xie, X.-X.; Liu, D.-Q.; Xu, Z.P.; Liu, R.-T. Efficient co-delivery of neo-epitopes using dispersion-stable layered double hydroxide nanoparticles for enhanced melanoma immunotherapy. Biomaterials 2018, 174, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gu, W.; Chen, J.; Chen, W.; Zu, Z.P. Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles. Biomaterials 2014, 35, 3331–3339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, D.-H.; Sc, M.; Cho, J.; Kwon, O.-J.; Yun, C.-O.; Choy, J.-H. Biodegradable Inorganic Nanovector: Passive versus Active Tumor Targeting in siRNA Transportation. Angew. Chem. Int. Ed. 2016, 55, 4582–4586. [Google Scholar] [CrossRef] [PubMed]
- Dragoi, B.; Uritu, C.M.; Agrigoroaie, L.; Lutic, D.; Hulea, V.; Postole, G.; Coroaba, A.; Carasevici, E. MnAl-Layered Double Hydroxide Nanosheets Infused with Fluorouracil for Cancer Diagnosis and Therapy. ACS Appl. Nano Mater. 2021, 4, 2061–2075. [Google Scholar] [CrossRef]
- Andrea, K.A.; Wang, L.; Carrier, A.J.; Campbell, M.; Buhariwalla, M.; Mutch, M.; MacQuarrie, S.L.; Bennett, C.; Mkandawire, M.; Oakes, K.; et al. Adsorption of Oligo-DNA on Magnesium Aluminum-Layered Double-Hydroxide Nanoparticle Surfaces: Mechanistic Implication in Gene Delivery. Langmuir 2017, 33, 3926–3933. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Gu, W.; Xu, Z.P. Mannose-conjugated layered double hydroxide nanocomposite for targeted siRNA delivery to enhance cancer therapy. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 2355–2364. [Google Scholar] [CrossRef]
- Usman, M.S.; Hussein, M.Z.; Fakurazi, S.; Saad, F.F.A. Gadolinium-based layered double hydroxide and graphene oxide nano-carriers for magnetic resonance imaging and drug delivery. Chem. Cent. J. 2017, 11, 47. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.; Fu, C.; Li, B.; Li, L.; Zhang, R.; Xu, T.; Xu, Z.P. Charge Reversion Simultaneously Enhances Tumor Accumulation and Cell Uptake of Layered Double Hydroxide Nanohybrids for Effective Imaging and Therapy. Small 2020, 16, 2002115. [Google Scholar] [CrossRef]
- Mei, X.; Ma, J.; Bai, X.; Zhang, X.; Zhang, S.; Liang, R.; Wei, M.; Evans, D.G.; Duan, X. A bottom-up synthesis of rare-earth-hydrotalcite monolayer nanosheets toward multimode imaging and synergetic therapy. Chem. Sci. 2018, 9, 5630–5639. [Google Scholar] [CrossRef]
- Thyveetil, M.A.; Coveney, P.V.; Greenwell, H.C.; Suter, J.L. Role of host layer flexibility in DNA guest intercalation revealed by computer simulation of layered nanomaterials. J. Am. Chem. Soc. 2008, 130, 12485–12495. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, B.; Gu, W.; Xu, Z.P. Modifying layered double hydroxide nanoparticles for tumor imaging and therapy. Clays Clay Miner. 2019, 67, 72–80. [Google Scholar] [CrossRef]
- Zuo, H.; Chen, W.; Li, B.; Xu, K.; Cooper, H.; Gu, Z.; Xu, Z.P. MnAl Layered Double Hydroxide Nanoparticles as a Dual-Functional Platform for Magnetic Resonance Imaging and siRNA Delivery. Eur. J. Chem. 2017, 23, 14299–14306. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Hu, P.; Xu, Y.; Bao, Q.; Ni, D.; Wei, C.; Shi, J. Efficient Gene Therapy of Pancreatic Cancer via a Peptide Nucleic Acid (PNA)-Loaded Layered Double Hydroxides (LDH) Nanoplatform. Small 2020, 16, e1907233. [Google Scholar] [CrossRef]
- Choi, G.; Kwon, O.-J.; Oh, Y.; Yun, C.-O.; Choy, J.-H. Inorganic Nanovehicle Targets Tumor in an Orthotopic Breast Cancer Model. Sci. Rep. 2014, 4, 4430. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.-J.; Oh, J.-M.; Choy, J.-H. Biocompatible nanoparticles intercalated with anticancer drug for target delivery: Pharmacokinetic and biodistribution study. J. Nanosci. Nanotechnol. 2010, 10, 2913–2916. [Google Scholar] [CrossRef]
- Asiabi, H.; Yamini, Y.; Alipour, M.; Shamsayei, M.; Hosseinkhani, S. Synthesis and characterization of a novel biocompatible pseudo-hexagonal NaCa-layered double metal hydroxides for smart pH-responsive drug release of dacarbazine and enhanced anticancer activity in malignant melanoma. Mater. Sci. Eng. C 2019, 97, 96–102. [Google Scholar] [CrossRef]
- Hakeem, A.; Zhan, G.; Xu, Q.; Yong, T.; Yang, X.; Gan, L. Facile synthesis of pH-responsive doxorubicin-loaded layered double hydroxide for efficient cancer therapy. J. Mater. Chem. B 2018, 6, 5768–5774. [Google Scholar] [CrossRef]
- Li, L.; Gu, Z.; Gu, W.; Liu, J.; Xu, Z.P. Efficient drug delivery using SiO2-layered double hydroxide nanocomposites. J. Colloid Interface Sci. 2016, 470, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Dong, A.; Li, X.; Wang, W.; Han, S.; Liu, J.; Liu, J.; Zhao, J.; Xu, S.; Deng, L. Layered double hydroxide modified by PEGylated hyaluronic acid as a hybrid nanocarrier for targeted drug delivery. Trans. Tianjin Univ. 2016, 22, 237–246. [Google Scholar] [CrossRef]
- Wang, L.; Xing, H.; Zhang, S.; Ren, Q.; Pan, L.; Zhang, K.; Bu, W.; Zheng, X.; Zhou, L.; Peng, W. A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imagings and simultaneous drug delivery. Biomaterials 2013, 34, 3390–3401. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Lv, X.; Zhang, M.; Wang, H.; Chen, S.; Zhu, J. MnO2 coated nanotheranostic LDH for synergistic cascade chemo/chemodynamic cancer therapy under the guidance of MRI-targeted diagnosis. Biomater. Sci. 2022, 10, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Zhang, K.L.; Chen, S.; Li, S.H.; Wang, L.L.; Wang, L.P.; Liu, R.; Gao, J.; Yang, H.H. Manganese-iron layered double hydroxide: A theranostic nanoplatform with pH-responsive MRI contrast enhancement and drug release. J. Mater. Chem. B 2017, 5, 3629–3633. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-H.; Lee, J.Y.; Kim, M.-K.; Park, J.H.; Oh, J.-M. Radioisotope Co-57 incorporated layered double hydroxide nanoparticles as a cancer imaging agent. RSC Adv. 2016, 6, 48415–48419. [Google Scholar] [CrossRef]
- Kim, H.J.; Jeung, D.G.; Oh, J.M. Boosting the anticancer activity of doxorubicin with a layered double hydroxide nanocarrier. Appl. Clay Sci. 2021, 203, 106000. [Google Scholar] [CrossRef]
- Hong, J.; Kang, M.; Jung, M.; Lee, Y.Y.; Cho, Y.; Kim, C.; Song, S.Y.; Park, C.G.; Doh, J.; Kim, B.-S. T-Cell-Derived Nanovesicles for Cancer Immunotherapy. Adv. Mater. 2021, 33, 2101110. [Google Scholar] [CrossRef]
- Lee, N.K.; Kim, S.-N.; Park, C.G. Immune cell targeting nanoparticles: A review. Biomater. Res. 2021, 25, 44. [Google Scholar] [CrossRef]
- Park, C.G.; Hartl, C.A.; Schmid, D.; Carmona, E.M.; Kim, H.-J.; Goldberg, M.S. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci. Transl. Med. 2018, 10, eaar1916. [Google Scholar] [CrossRef] [Green Version]
- Seo, H.S.; Wang, C.-P.J.; Park, W.; Park, C.G. Short Review on Advances in Hydrogel-Based Drug Delivery Strategies for Cancer Immunotherapy. Tissue Eng. Regen. Med. 2022, 19, 263–280. [Google Scholar] [CrossRef]
- Li, A.; Qin, L.; Wang, W.; Zhu, R.; Yu, Y.; Liu, H.; Wang, S. The use of layered double hydroxides as DNA vaccine delivery vector for enhancement of anti-melanoma immune response. Biomaterials 2011, 32, 469–477. [Google Scholar] [CrossRef]
- Yan, S.; Xu, K.; Li, L.; Gu, W.; Rolfe, B.E.; Xu, Z.P. The Pathways for Layered Double Hydroxide Nanoparticles to Enhance Antigen (Cross)-Presentation on Immune Cells as Adjuvants for Protein Vaccines. Front. Pharmacol. 2018, 9, 1060. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Gu, W.; Zhang, B.; Rolfe, B.E.; Xu, Z.P. High adjuvant activity of layered double hydroxide nanoparticles and nanosheets in anti-tumour vaccine formulations. Dalton Trans. 2018, 47, 2956–2964. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.E.; Park, D.H.; Choy, J.H.; Choi, S.J. Intracellular trafficking pathway of layered double hydroxide nanoparticles in human cells: Size-dependent cellular delivery. Appl. Clay Sci. 2012, 65–66, 24–30. [Google Scholar] [CrossRef]
- Zhang, L.-X.; Jia, Y.-B.; Huang, Y.-R.; Liu, H.-N.; Sun, X.-M.; Cai, T.; Liu, R.-T.; Xu, Z.P. Efficient delivery of clay-based nanovaccines to the mouse spleen promotes potent anti-tumor immunity for both prevention and treatment of lymphoma. Nano Res. 2021, 14, 1326–1334. [Google Scholar] [CrossRef]
- Yang, L.; Sun, J.; Liu, Q.; Zhu, R.; Yang, Q.; Hua, J.; Zheng, L.; Li, K.; Wang, S.; Li, A. Synergetic Functional Nanocomposites Enhance Immunotherapy in Solid Tumors by Remodeling the Immunoenvironment. Adv. Sci. 2019, 6, 1802012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Master, A.; Livingston, M.; Sen Gupta, A. Photodynamic nanomedicine in the treatment of solid tumors: Perspectives and challenges. J. Control. Release 2013, 168, 88–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Yang, T.; Mao, C. Enhancement of photodynamic cancer therapy by physical and chemical factors. Angew. Chem. Int. Ed. 2019, 58, 14066–14080. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Bhattarai, P.; Dai, Z.F.; Chen, X.Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108. [Google Scholar] [CrossRef]
- Ruan, Y.D.; Jia, X.D.; Wang, C.; Zhen, W.Y.; Jiang, X. Mn-Fe layered double hydroxide nanosheets: A new photothermal nanocarrier for O2-evolving phototherapy. Chem. Commun. 2018, 54, 11729–11732. [Google Scholar] [CrossRef]
- Chen, J.; Ning, C.; Zhou, Z.; Yu, P.; Zhu, Y.; Tan, G.; Mao, C. Nanomaterials as photothermal therapeutic agents. Prog. Mater. Sci. 2019, 99, 1–26. [Google Scholar] [CrossRef]
- Tian, Q.; Xue, F.; Wang, Y.; Cheng, Y.; An, L.; Yang, S.; Chen, X.; Huang, G. Recent advances in enhanced chemodynamic therapy strategies. Nano Today 2021, 39, 101162. [Google Scholar] [CrossRef]
- Manivasagan, P.; Joe, A.; Han, H.-W.; Thambi, T.; Selvaraj, M.; Chidambaram, K.; Kim, J.; Jang, E.-S. Recent advances in multifunctional nanomaterials for photothermal-enhanced Fenton-based chemodynamic tumor therapy. Mater. Today Biol. 2022, 13, 100197. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Yung, B.; Huang, P.; Chen, X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem. Rev. 2017, 117, 13566–13638. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Kong, X.; Chen, W.; Yan, L.; Huang, H.; Lv, Z.; Jiang, P.; Mu, A.; Huang, C.; Shi, J. Efficient starvation therapy with three-pathway blocking in combination with PTT/CDT for TME reversal and tumor apoptosis. J. Ind. Eng. Chem. 2022, 110, 456–470. [Google Scholar] [CrossRef]
- Ye, Y.; Bremner, D.H.; Zhang, H.; Chen, X.; Lou, J.; Zhu, L.-M. Functionalized layered double hydroxide nanoparticles as an intelligent nanoplatform for synergistic photothermal therapy and chemotherapy of tumors. Colloids Surf. B 2022, 210, 112261. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, R.; Yan, L.; Chen, X.; Zhu, G. Combined chemotherapy and photodynamic therapy using a nanohybrid based on layered double hydroxides to conquer cisplatin resistance. Chem. Commun. 2015, 51, 11587–11590. [Google Scholar] [CrossRef]
- Rejinold, N.S.; Choi, G.; Choy, J.-H. Bio-Inorganic Layered Double Hydroxide Nanohybrids in Photochemotherapy: A Mini Review. Int. J. Mol. Sci. 2022, 23, 11862. [Google Scholar] [CrossRef]
- Komarala, E.V.P.; Nigam, S.; Aslam, M.; Bahadur, D. In vitro evaluation of layered double hydroxide-Fe3O4 magnetic nanohybrids for thermo-chemotherapy. New J. Chem. 2016, 40, 423–433. [Google Scholar] [CrossRef]
LDH Host | Synthetic Method | Biofunctional Molecules | Cell Line and Animal Model | Applications | Key Feature | Refs. |
---|---|---|---|---|---|---|
MgAl | Co-precipitation | siRNA | U2OS cells | Gene therapy | Gene therapy with siRNA-based LDH | [28] |
MgAl | Ion-exchange | DNA, FITC, adenosine triphosphate | HL-60 cells, NIH3T3 cells | Gene therapy | Gene delivery system with high transfection efficiency | [24] |
MgAl | Co-precipitation, silane coupling | siRNA, FITC | KB cells, A549cells, xenograft mice model-bearing KB tumor | Gene therapy, fluorescence imaging | siRNA-based gene therapy in vivo, Selective tumor targeting conjugated with FA | [35] |
MnAl | Co-precipitation, self-assembly | siRNA, Mn2+ | Neuro-2a cells | Gene therapy, MRI | Therapeutic application with T1-weighted MRI | [44] |
MgAl | Co-precipitation | MTX | orthotopic breast cancer | Chemotherapy | Treated on orthotopic tumor model | [46] |
MnFe | Co-precipitation | MTX, Mn2+ | Hep G2 cells, HeLa cells | Chemotherapy, MRI | First utilization on MnFe-LDH | [54] |
MgAl | Co-precipitation, ion-exchange | DOX, PAA | MG-63 cells, A549 cells | Chemotherapy | Boosting the DOX activity with PAA | [56] |
NaCa | Urea hydrolysis | Dacarbazine (DAC) | MCF-7 cells, A-375 cells | Chemotherapy | Utilization of NaCa-LDH with DAC | [48] |
GdMgAl | Co-precipitation, self-assembly | DOX, Gd3+, Au NPs | L929 cells, HeLa cells, mice-bearing 4T1 murine breast tumor | Chemotherapy, MRI, CT | Selective cancer targeting in vivo through EPR effect | [52] |
CoMgAl | Co-precipitation, ion-exchange | MTX, Co-57 | CT-26 cells | Chemotherapy, SPECT, CT | The in vivo SPECT/CT images with LDH labeled RI | [31] |
MgAl | Co-precipitation | CpG, OVA | E.G7-OVA cells | Immunotherapy | Compared to different routes for effective injection | [65] |
MgAl | Co-precipitation | OVA | E.G7-OVA cells, female C57BL/6 mice | Immunotherapy | Demonstration of protein-based antitumor vaccine adjuvants | [63] |
MgAl | Co-precipitation | miR155 | TC-1 murine cervical cells, RAW264.7 murine macrophage-like cells | Immunotherapy | Combinational cancer immunotherapy | [66] |
MgAl | Co-precipitation, ion-exchange | 5-FU, CD-siRNA | MCF-7 cells, U2OS cells, HCT-116 cells | Combination therapy (Gene, Chemo) | Combined two therapeutic applications. | [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Seo, H.S.; Park, W.; Park, C.G.; Jeon, Y.; Park, D.-H. Biofunctional Layered Double Hydroxide Nanohybrids for Cancer Therapy. Materials 2022, 15, 7977. https://doi.org/10.3390/ma15227977
Lee J, Seo HS, Park W, Park CG, Jeon Y, Park D-H. Biofunctional Layered Double Hydroxide Nanohybrids for Cancer Therapy. Materials. 2022; 15(22):7977. https://doi.org/10.3390/ma15227977
Chicago/Turabian StyleLee, Joonghak, Hee Seung Seo, Wooram Park, Chun Gwon Park, Yukwon Jeon, and Dae-Hwan Park. 2022. "Biofunctional Layered Double Hydroxide Nanohybrids for Cancer Therapy" Materials 15, no. 22: 7977. https://doi.org/10.3390/ma15227977